

WEST TERMINUS - CROSS-FLORIDA GREENWAY ASSESSMENT WORK ORDER 1 FINAL REPORT

,

LOWER WITHLACOOCHEE RIVER RESTORATION ALTERNATIVES FEASIBILITY STUDY

Prepared for:

SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT 7329 Broad Street Brooksville, Florida 34604

By:

URS Corporation Southern 7650 West Courtney Campbell Causeway Tampa, Florida 33607-1462

December 31, 2003

<u>Page</u>

TABLE OF CONTENTS

			1				
1	GENI	ENERAL PROJECT INFORMATION					
	1.1	Background	I				
	1.2	Purpose	I				
2	DATA	COLLECTION AND ASSESSMENT					
3	FIELI	O RECONNAISSANCE	6				
4	CROS	SS-FLORIDA BARGE CANAL SYSTEM COMPONENTS INVENTORY	7				
	4.1	Introduction	7				
	4.2	Description Of Features	7				
	4.3	Summary of Features	21				
5	ADD	ITIONAL INFORMATION AND LAND SURVEY REQUIREMENTS	24				
	5.1	Introduction	24				
	5.2	Description of Data Required	24				
	5.3	Summary Data Table and Estimated Costs	25				
6	HYD	ROLOGIC STUDIES	27				
	6.1	Background	27				
	6.2	Data	27				
	6.3	Long-Term Flow Hydrographs Assessment	28				
		6.3.1 Alternative 4, Baseline Condition Hydrograph	29				
		6.3.2 Alternatives 1, 2, and 3 Hydrographs	29				
	6.4	Flood Flow Hydrographs Assessment	30				
		6.4.1 Selection of Flood Event	30				
		6.4.2 Reservoir Inflow and Discharge Hydrographs	31				
		6.4.3 Alternative 4, Baseline Condition Hydrograph	32				
		6.4.4 Alternative 1, 2, and 3, Proposed Conditions	32				
	6.5	Tide Stage Hydrographs	32				
		6.5.1 Long-term Flow Assessment	33				
		6.5.2 Flood Flow Assessment	33				

APPENDIX A APPENDIX B

Section

LIST OF FIGURES

- 1 Cross-Florida Barge Canal System Components
- 2 Inglis Dam Plan
- 3 Barge canal Cross-Section (Typical)
- 4 Rock Dam Existing Section
- 5 Proposed Flood Protection Levee Typical Section MSE Wall Alternative
- 6 Bypass Channel Cross-Sections
- 7 Bypass Channel Spillway
- 8 US-19 Bridge Withlacoochee River
- 9 US-19 Bridge Barge Canal
- 10 Bypass Channel System Layout Plan
- 11 Additional Land Survey Locations
- 12 USGS Gage Locations
- 13 Comparison of Daily Streamflow for Median Years
- 14 Lake Rousseau Median Year Discharge, Alternative 4 (Baseline Condition)
- 15 Lake Rousseau 100-Year Discharge, Alternative 4 (Baseline Condition)
- 16 Lake Rousseau 100-Year Discharge, Alternatives 1, 2 and 3
- 17 Withlacoochee River Tidal Variation Median Year Baseline Condition

LIST OF TABLES

<u>Table</u>		Page
2-1	Inventory of Data Collected	3
4-1	System Component Design Summary	21 ·
5-1	Additional Information Requirement Summary	26
6-1	Flood Frequency Analysis For Withlacoochee Near Holder	30

• • •

1 GENERAL PROJECT INFORMATION

1.1 Background

The West Terminus Cross-Florida Greenway is comprised of a number of facilities, which are part of the Cross Florida Barge Canal system. The Cross Florida Barge Canal system and its components are illustrated on **Figure 1**. The system was partially constructed in the 1960's and later abandoned in the early 1970's. Authorized by the U.S. Congress during the 1940's, the project was intended to facilitate the movement of ocean going vessels traveling between the Atlantic Ocean and the Gulf of Mexico, the Caribbean Sea, and the Panama Canal. The Barge Canal facilities were designed by the U.S. Army Corps of Engineers. Significant elements of the overall project completed by the Corps within the west terminus area include: 1) the portion of the canal from the Gulf of Mexico to the Inglis Lock; 2) the Inglis Lock; the Inglis (Lake Rousseau) Dam; 3) the Bypass Channel and Spillway; and the 4) Rock Dam.

Construction of the Barge Canal system was halted during the Nixon administration in 1971 because of concerns related to cost and the project's effect on the environment. Although construction activities ended three decades ago, it was not until 1990 that the official construction de-authorization was approved by Congress and signed by President Bush (after an extensive study by the Corps of Engineers). Subsequent to its de-authorization, the Inglis Lock and associated facilities became part of the Cross Florida Greenbelt State Recreation and Conservation Area that was established by the Florida State Legislature through the enactment of a law (F.S. 90-328). Currently, the Cross Florida Barge Canal facilities constructed near Inglis are owned by the Florida Department of Environmental Protection (FDEP). With the exception of the Main Dam and Bypass Channel Spillway, these facilities are operated by FDEP's Office of Greenways and Trails. The dam and spillway are operated by the Southwest Florida Water Management District.

1.2 Purpose

The portion of the Withlacoochee River downstream of Inglis Dam has undergone significant alteration since the turn of the twentieth century. The construction of the Cross-Florida Barge Canal in the 1960's created additional impacts to the segment of the river downstream of the canal. Construction of the barge canal included a dam on the Withlaccochee River known locally as the "Rock Dam". This dam effectively severs all flows released from the Inglis Dam main gates including large flood flows. The lower segment of the river downstream of the Rock Dam receives flows only from the bypass channel system via a spillway at its western terminus. The maximum flow rate from this bypass system is estimated to be 1,540 cfs, which is considerably less than flood flow rates expected for the river system. The changes described above have altered the historic flow regime of the Withlacoochee River downstream of Inglis Dam, which have created environmental impacts. It should be noted, pursuant to the results of a recent dam safety planning study, the Rock Dam is presently being reconstructed as a flood protection levee. The flood protection levee is designed to offer full protection to downstream structures on the Withlacoochee River in case of an Inglis Dam failure.

A Basin Initiative was requested by the Withlacoochee River Basin Board in fiscal year 2003 to evaluate restoration alternatives for the portion of the Withlacoochee River downstream of Inglis Dam. The purpose of this study is to carry out this Basin Initiative and evaluate a number of restoration alternatives, which are intended to mitigate some of the environmental impacts created by the construction of the Cross-Florida Barge Canal. The list below is a summary of alternatives that are to be evaluated as part of this study. Each of the alternatives will be evaluated with respect to their impact on flooding, natural systems, water quality, and navigation. In addition, a cost to construct and maintain the facilities necessary for each of the alternatives will be estimated. This information and the results of the evaluation will be used to create a decision matrix, which will be useful in determining the feasibility of each alternative.

- 1. Remove the Rock Dam, which presently severs the connection of the lower and upper river segments, and construct a variable-elevation control structure in the Barge Canal.
- 2. Replace the Rock Dam with a variable-elevation control structure (at the same location), construct a variable-elevation control structure in the Barge Canal, and construct a lock for navigation.
- 3. Reconstruct the Bypass Channel spillway with increased discharge capacity to facilitate increased flows in the lower segment of the river.
- 4. No improvement/baseline condition alternative.

The restoration alternatives study has been broken down into two work orders. The report contained herein is intended to document the tasks conducted as part of Work Order 1. The tasks are listed below, and were taken from the District Scope of Work. The following sections of this report address each of the tasks listed below in the order shown.

- 1.1.2.1 Review Existing Watershed Parameters
- 1.1.2.2 Field Reconnaissance
- 1.1.2.3 Hydraulic Features Inventory
- 1.1.2.4 Identification of Surveys to be Performed
- 1.1.2.5 Update Watershed Parameters
- 1.1.2.6 Phase I Report of Findings

*** * ***

2 DATA COLLECTION AND ASSESSMENT

The data collection and assessment task was conducted as part of Task 1.1.2.1 Review Existing Watershed Parameters, defined in the scope-of-work. This task included acquiring and reviewing available data from studies previously conducted by URS, FDOT, FDEP and others for the subject area, as well as available data on navigation, natural systems and cost. The results of this data collection and assessment task were used to determine required field reconnaissance (Task 1.1.2.2) and to identify additional information and land survey requirements (Task 1.1.2.4). An inventory of the data collected as part of this study is contained in Table 1.

TITLE	SOURCE	DATE
Reports and other Documents:		
Lake Rousseau Dam Failure Assessment, Final Report	URS Tampa	February, 2001
Lake Rousseau Dam Failure Assessment, Supplemental Numerical Modeling Report	URS Tampa	March, 2003
Emergency Action Plan - Inglis Main Dam and Bypass Channel Dam	URS Tampa	February, 2003
Boat User Survey - US 19/US 98 Cross Florida Barge Canal Bridge from West Cornflower Drive to West Foss Grove Path	Florida Department of Transportation	November, 2002
Inglis Lock Rehabilitation and New Smaller Lock Study - Volume I Rehabilitation Alternative	Bergmann Associates &	January, 2002
Dept. of Env. Protection Office of Greenways and Trails - Marjorie Harris Carr Cross Florida Greenway - Levy Construction Plans	URS	October, 2002
Report Geotechnical Engineering Services - Flood Protection Levee at Lower Withlacoochee and Cross Florida Barge Canal - Levy County, FL	URS Corporation	April, 2001
Addendum Report Geotechnical Engineering Services - Flood Protection Levee Alternatives - Lower Withlacoochee and Cross Florida Barge Canal - Levy County, FL	URS Corporation	April, 2002
Structure Profile - Channel G Salinity Barrier with Construction Costs	SWFWMD	June, 2002
Structure Profile - S-159 Lower with Construction Costs	SWFWMD	February, 2001
Structure Profile - S-551 Salinity Barrier with Construction Costs	SWFWMD	April, 2001
Structure Profile - S-155	SWFWMD	February, 2001
Yankeetown Watershed Mgmt. Plan Update	Jones, Edmunds and Associates	October,2003
US 19 Bridge Over Florida Barge Canal PD&E Study - Plan and Profile	Florida Department of Transportation	February, 2003
SR 55 (US 19) Over Withlacoochee River - Construction Plan Set	State of Florida Department of Transportation Structures	1970
SWFWMD Aerial Topography, 22 Sections Within the Study Area in T17S, R16E and T17s, R17E		Various
Regulation Manuel for Lower Hillsborough Flood Detention Area and Tampa Bypass Canal	USACOE, Jacksonville District	N/A
Digital Aerials with Contours - For the following Sections: 1, 3, 4, 5, 6, 7, 17, 16, 19, 30, 31, 16, 17, 24, 25, 26, 27, 32, 33, 34, 35, 36/16/16	SWFWMD	August, 2003
Lake Rousseau Dam Failure Assessment, Hydrologic and Hydraulic Models used for Study	URS Tampa	February, 2001
Lake Rousseau Dam Failure Assessment Study, Supplemental Numerical Modeling Hydraulic Models used for Study	URS Tampa	March, 2003

Table 2-1 INVENTORY OF DATA COLLECTED

Table 2-1 (Continued) INVENTORY OF DATA COLLECTED

TITLE	SOURCE	DATE
Emergency Action Plan - Inglis Main Dam and Bypass Channel Dam, Affected Structure Data Base with Finished Floor Elevations	URS Tampa	February, 2003
Emergency Action Plan - Inglis Main Dam and Bypass Channel Dam, Hydraulic Models for Allowable Flood Flows Assessment	URS Tampa	February, 2003
1970 Cross-Florida Barge Canal-Plans for Construction of Inglis Spillway and Dam	United States Army Corp of Engineers	March, 1970
Detailed Design Memorandum No. 10, Cross Florida Barge Canal. Inglis Spillway and Dam	Department of the Army, Jacksonville District Corps of Engineers	September, 1966
Cross-Florida Barge Canal Project, Inglis Bypass Spillway, Pre- Inspection Brochure	Department of the Army, Jacksonville District Corps of Engineers	N/A
Water Control Plan for Inglis Project Works	State of Florida, DEP, Office of Greenways and Trails	June, 2001
Assessment of Navigation Alternatives	Greiner, Inc.	November, 1993
Evaluation of "Special Assessment and Review of the Inglis Works and Navigation Options"	Greenway Trails FDEP	July, 1994
Conceptual Design for Implementation of the Lake Rousseau Operations and Management Plan	Greiner, Inc.	June, 1992
Inglis Lock Usage	FDEP	May, 1999
Dam Breach Analysis	Greiner, Inc.	May, 1992
Draft - Lake Rousseau Operations and Mgnt Study	South West Florida Water Management Disttict	August, 1988
Lake Rousseau Operations and Management Study	South West Florida Water Management Disttict	February, 1989
An Analysis of Vegetation-Salinity Relationships in Seven Tidal Rivers on the Coast of West-Central Florida (Draft)	South West Florida Water Management Disttict	December, 2002
Functions of the Inglis Project Works on the Former Cross Florida Barge Canal	Greiner, Inc.	December, 1993
Cross Florida Barge Canal Inglis Lock Bypass Channel Channel Sections	Department of the Army, Jacksonville District Corps of Engineers	February, 1968
Cross-Florida Barge Canal Inglis Lock Cooling Water Bypass Channel Layout Plan & Sections	Department of the Army, Jacksonville District Corps of Engineers	January, 1966
Cross-Florida Barge Canal Inglis Lock-Bypass Channel Layout Plan	Department of the Army, Jacksonville District Corps of Engineers	February, 1968
Hydrologic Data: 13 - 22 - 27 - 27 - 28 - 57 - 5		
Withlacoochee River near Holder - Daily Streamflow / 1928 to 2002	USGS 02313000	September, 2003
Withlacoochee River near Holder - Peak Streamflow / 1932 to 2002	USGS 02313000	September, 2003
Rainbow Springs near Dunnellon - Daily Streamflow / 1965 to 2002	USGS 02313000	September, 2003
Rainbow Springs near Dunnellon - Peak Streamflow / 1965 to 2002	USGS 02313000	September, 2003
Withlacoochee River at Inglis Dam near Dunnellon - Daily Streamflow / 1969 to 2001	USGS 02313230	September, 2003
Withlacoochee River at Inglis Dam near Dunnellon - Peak Streamflow / 1970 to 2001	USGS 02313230	September, 2003
Withlacoochee River at Bypass Channel near Inglis - Daily Streamflow / 1970 to 2001	USGS 02313250	September, 2003
Withlacoochee River at Bypass Channel near Inglis - Peak Streamflow / 1971 to 2001	USGS 02313250	September, 2003
Cedar Key Tide Gage (Adjusted for Withlacoochee River, Various P.O.R.)	NOAA Station No. 8727520	N/A
Environmental Data Inventory:		
US Department of Agricultural, Natural Resources Conservation Service	Citrus County Soil Survey	October, 1988
US Department of Agricultural, Natural Resources Conservation Service	Levy County Soil Survey	September, 1996
National Wetlands Inventory Maps	US Fish and Wildlife Service	Various
Florida Department of Transportation, Florida Land Use, Cover and Forms Classification System, 3rd Edition		1999

Table 2-1 (Continued)INVENTORY OF DATA COLLECTED

TITLE	SOURCE	DATE	
US Fish and Wildlife Service, Classification of Wetlands and Deepwater Habitats of the United States	Cowardin, et.al	1979	
Inglis Lock Rehabilitation and New Smaller Lock Study, Environmental Assessment	Bergmann Associates & URS Corporation	January, 2002	
7.5 Minute Series Topographic Quadrangles: Yankeetown SE, Fla.Yankeetown, Fla.Red Level, Fla.Crystal River, FlaDunnellon, Fla.	US Geological Survey	19911993198819541954	
GFC Biodiversity Hot Spots - grid	Florida Game and Fresh Water Fish Commission	N/A	
GFC Habitat and Landcover - grid	Florida Game and Fresh Water Fish Commission	N/A	
GFC Priority Wetland Habitats - grid	Florida Game and Fresh Water Fish Commission	N/A	
GFC Strategic Habitat Conservation Areas - grid	Florida Game and Fresh Water Fish Commission	N/A	
A second s	puraiser/Office		
Property Value & Structure Information - Parcel 06-17-17-03970- 001-00	Levy County Soil Survey	October, 2003	
Property Value & Structure Information - Parcel 05-17-17-03961- 000-00	Levy County Soil Survey	October, 2003	
Property Value & Structure Information - Parcel 06-17-17-03967- 000-00	Levy County Soil Survey	October, 2003	
Property Value & Structure Information - Parcel 05-17-17-03965- 000-00	Levy County Soil Survey	October, 2003	

• • •

3 FIELD RECONNAISSANCE

The field reconnaissance task was conducted as part of Task 1.1.2.2 Field Reconnaissance, defined in the scope-of-work. Following a review of the data collected for this study, a field reconnaissance visit was scheduled. The reconnaissance work was intended to familiarize personnel working on the project with the project site including layout of the system, known flooding areas and environmentally sensitive areas. This fieldwork was also used to acquire any available background information from local sources.

Representatives from the Southwest Florida Water Management District, URS and the Florida Department of Environmental Protection, Office of Greenways and Trails participated in the field reconnaissance. The field work consisted of: 1) meeting with government officials and representatives from the Towns of Inglis and Yankeetown to document flood prone areas and gather information on flood events and tides, 2) visiting flood prone and environmentally sensitive areas, 3) and touring the Cross-Florida Barge Canal facilities. The photograph shown below was taken near the south end of Magnolia Avenue located on the west end of Yankeetown. The photograph illustrates a wetland area on the north side of the river. Appendix A of this report contains full documentation of the field reconnaissance work conducted on September 12, 2003 including photographs of the areas and facilities visited.

• • •

4 CROSS-FLORIDA BARGE CANAL SYSTEM COMPONENTS INVENTORY

The system component inventory task was conducted as part of Task 1.1.2.3 Hydraulic Features Inventory, defined in the scope-of-work.

4.1 Introduction

The west terminus portion of the Cross-Florida Barge Canal System consists of a number of components, which are illustrated on **Figure 1**. The system components include hydraulic structures and associated facilities, which are summarized as follows:

- Lake Rousseau,
- Inglis Dam and Main Spillway,
- Withlacoochee River Upper Segment,
- Cross-Florida Barge Canal,
- Rock Dam,
- Inglis Lock,
- Bypass Channel and Bypass Channel Spillway,
- Withlacoochee River Lower Segment,
- US-19 Bridge at Withlacoochee River,
- US-19 Bridge at Barge Canal, and
- Lock Access Road Bridge at Bypass Channel.

Section 4.2 of this inventory provides a brief description and a photograph of each of the Cross-Florida Barge Canal System components. Section 4.3 provides a design summary in tabular form for each of the components.

4.2 Description Of Features

Lake Rousseau

Lake Rousseau is a man-made impoundment of the Withlacoochee River formed primarily by Inglis Dam. The lake is located in Citrus and Levy Counties and presently serves to supply water for the Inglis Lock and barge canal system. The lake is characterized by large shallow areas that vary in depth from zero feet on the east end to ten feet on the west end. Given the shallow nature of the lake and only minimum freeboard, this lake provides only minor flood protection and little long term water storage. There are three outlets for water from the lake including: (1) the Main Spillway, (2) the Bypass Spillway, and (3) Inglis Lock. A view of the west end of the lake is shown in Photo 4-1.

Photo 4-1: Lake Rousseau looking northwest from Inglis Dam

Inglis Dam and Main Spillway

A dam in one form or another has been in place at the Inglis Dam site since 1908. The dam is located 8 ½ miles upstream of the mouth of the Withlacoochee River and about two miles east of US-19. Inglis Dam is an earthen embankment approximately 34 feet high and 1,100 feet long. It is built across the Withlacoochee River valley and creates the Lake Rousseau reservoir. The dam's appurtenant facilities include a two-gate spillway system with ogee weirs, which are used to control flood stages in the reservoir. Photo 4-2 illustrates the dam and spillway system. Discharge from the main spillway system enters the short segment of the Withlacoochee River upstream of the Barge Canal. Photo 4-3 illustrates the outlet pool below the spillway. Figure 2 is plan of Inglis Dam and the main spillway.

Photo 4-2: Inglis Dam and Main Spillway

Photo 4-3: Main Spillway outlet pool, also head area for the Withlacoochee River - Upper Segment

Withlacoochee River – Upper Segment

The segment of the Withlacoochee River located between the Barge Canal and Inglis Dam is commonly referred to as the Upper Segment. This river segment, which is approximately 1.44 miles long and has an average bottom slope of 0.1 percent, carries flood flows discharged

through the Inglis Dam Main Spillway. This natural conveyance system is characterized by forested channel banks and flood plain areas. Urbanization is occurring on the south bank of the system over the entire reach length. As of December 2002 there were 15 known residences in this reach, several of whom have docks on the river. **Photo 4-4** illustrates a typical segment of this reach.

Photo 4-4: Withlacoochee River - Upper Segment

Cross-Florida Barge Canal

The Cross-Florida Barge Canal within the west terminus area is approximately 7.4 miles long. The canal begins on its west end at the Gulf of Mexico and terminates on the east end at Inglis Lock. The canal, a prismatic channel, was designed to provide a minimum draft of 12 feet and ranges in width from 350 feet to 500 feet. The Barge Canal has a 1,500 feet long waiting basin at the west end of the lock. **Figure 3** illustrates a typical section of the Barge Canal.

The Cross-Florida Barge Canal in this reach is characterized as having steep side slopes, which are heavily vegetated with trees and shrubs, and spoil rows are located on both sides adjacent to the top of bank. The spoil rows were placed as part of canal construction and exist throughout most of the reach. The Barge Canal receives flood flows from the upper segment of the Withlacoochee River and conveys these flows to the Gulf of Mexico. Photos 4-5 and 4-6 illustrate the Barge Canal in this reach.

Photo 4-5: Cross-Florida Barge Canal looking west from Inglis Lock

Photo 4-6: Cross-Florida Barge Canal at confluence with Withlacoochee River - Upper Segment

Rock Dam

The Rock Dam is located on the Withlacoochee River about $6\frac{1}{2}$ miles upstream of the mouth. This facility forms the right bank of the Barge Canal and is technically a levee as there are no discharge facilities to pass flow to downstream areas, and it was not designed to overflow. The construction of this facility effectively severed the upper and lower segments of the

Withlacoochee River and allowed flood flows from the upper segment to be shunted down the Barge Canal. The facility as originally constructed consisted of an earthen embankment with top of bank elevation higher than the 100-year flood stage within the Barge Canal. The facility is currently being reconstructed with a higher top elevation as a dam safety measure. The new facility incorporates an MSE wall into the existing embankment. Figures 4 and 5 are sections of the existing Rock Dam and proposed flood protection levee. Photos 4-7 and 4-8 illustrate the existing Rock Dam and proposed flood protection levee.

Photo 4-7: Rock Dam

Photo 4-8: Flood protection levee under construction

Inglis Lock

Inglis Lock is located at the eastern terminus of the Barge Canal. The lock was designed to raise and lower ocean-going vessels between the Gulf of Mexico and Lake Rousseau, and works with water levels in the range of -2 to 28 ft-NGVD. One lockage cycle requires about 11 million gallons of water supplied from Lake Rousseau (Inglis Pool). Photos 4-9, 4-10 and 4-11 illustrate the Inglis Lock and its associated gates. At present, Inglis Lock is not operational. The State of Florida is in the process of developing design plans for future renovations.

Photo 4-9: Inglis Lock

Photo 4-10: Inglis Lock – Head Gate

Photo 4-11: Inglis Lock – Tail Gate

Bypass Channel and Bypass Channel Spillway

The Bypass Channel and Spillway system is located north and west of Inglis Lock. These facilities allow for the controlled discharge of water from Lake Rousseau to the lower segment of the Withlacoochee River, which was necessitated due to the severance of the upper and lower segments of the river by the Rock Dam. Figure 6 illustrates the Bypass Channel cross-sections. Figure 7 is the Bypass Channel Spillway plan. Figure 10 illustrates the Bypass Channel System layout. Photos 4-12, through 4-15 illustrate the Bypass Channel and Spillway.

Photo 4-12: Bypass Channel looking upstream from the spillway

Photo 4-13: Bypass Channel Spillway

Photo 4-14: Bypass Channel Spillway – upstream side

Photo 4-15: Bypass Channel Spillway outlet pool, also head area for the Withlacoochee River - Lower Segment

Withlacoochee River – Lower Segment

The segment of the Withlacoochee River starting at the mouth and going upstream to the Bypass Channel Spillway is commonly referred to as the Lower Segment. The lower segment is approximately 6.5 miles long and has an average bottom slope of 0.006 percent. The primary source of fresh water for this segment of the river is from Lake Rousseau via the Bypass Channel Spillway. This natural conveyance system is characterized by forested channel banks and flood plain areas. Urbanization is occurring primarily on the north bank of the system over the entire reach length and to a lesser degree on the south bank areas. As of December 2002 there were 448 known residences in this reach and a large number docks on the river. This reach contains a single pair of bridges that serve US-19. Photos 4-16 and 4-17 illustrate some typical areas within this segment.

Photo 4-16: Withlacoochee River - Lower Segment at Coast Guard Station

Photo 4-17: Withlacoochee River - Lower Segment at West Yankeetown

US-19 Bridge at Withlacoochee River

The US-19 Bridge at the Withlacoochee River was constructed circa 1970. This bridge consists of two spans each with two lanes. The bridge low member is at elevation 13.6 ft-NGVD and is

suitable in height to accommodate only relatively small vessels. Photo 4-18 illustrates the existing bridge. Figure 8 is a plan and elevation of the bridge.

Photo 4-18: US-19 Bridge over Withlacoochee River

US-19 Bridge at Barge Canal

The existing US-19 Bridge at the barge canal was constructed as part of the Cross-Florida Barge Canal System. The bridge is a single span two-lane bridge with sufficient height to accommodate ocean-going vessels. Photos 4-19 and 4-20 illustrate the existing bridge. Figure 9, Alternative 1 is a profile of a proposed bridge that is equivalent to the existing span. A second bridge is being planned at this location as part of the Florida Suncoast Parkway expansion. Figure 9, Alternative 2 is a profile of a proposed bridge.

Photo 4-19: US-19 Bridge over Barge Canal

Photo 4-20: US-19 Bridge over Barge Canal with canal in background

Lock Access Road Bridge at Bypass Channel

The Lock Access Road Bridge at the Bypass Channel was constructed as part of the Cross-Florida Barge Canal System. The bridge consists of three concrete box culverts wide enough to accommodate two traffic lanes. This bridge forms the flow control for the Bypass Channel System. **Photo 4-21** illustrates the existing bridge. **Figure 10** illustrates the location and alignment of the lock access road at the Bypass Channel.

Photo 4-21: Lock Access Road Bridge over Bypass Channel

4.3 Summary of Features

The table below presents a summary of design parameters for each of the Barge Canal System components.

System Component		Design Data		Plans and Details
Lake Rousseau	•	Length	11 mi	1
	•	Surface Area	6.5 mi ²	
	•	Normal Pool	27.5 ft-NGVD	
1	•	Drainage Area	2,020 mi ²	
Inglis Dam and Main	•	Earthen Embankment:		Figure 2
Spillway		– Length	1,100 ft	
	1	- Top Elevation	34 ft-NGVD	
		- Crown Width	32 ft	
1	(Side Slopes: 		
ļ		Pool Side	6:1	
	{	Land Side	3:1	
)	•	Horizontal Apron Elev.	(-)7.0 ft-NGVD	
	•	Spillway:		
		– Hydraulic Design Cond	ition:	
		Discharge	18,000 cfs	
		Headwater Elev.	27 ft-NGVD	
		Tailwater Elev.	17.2 ft-NGVD	
		– Crest:		
		Shape	Ogee	
	1	Elevation	11.3 ft-NGVD	
		Net Length	80 ft.	
		- Control Gates:	_	
		Number	2	
		Width x Height	<u>40 ft x 16.7 ft.</u>	
Withlacoochee River - Upper	•	Length	1.44 mi	
Segment	•	Channel Slope	0.1%	
		Bottom Elev. (-)6.5 -	→ (-)14.0 ft-NGVD	
Cross-Florida Barge Canal	•	Canal Segment Length	7.4 mi	Figure 3
	•	Channel Geometry:		
		- Shape	Trapazoidal	
	Í	– TOB Elev.	10-15 ft-NGVD	
		- Top Width	350-500 ft	
	 	– Bottom Elev. (typ)	(-)14 ft-NGVD	
Rock Dam (Existing)	•	Earthen Embankment:		Figure 4
		– Length	350 ft	Í
}		- Top Elevation	15 ft-NGVD	
	}	- Crown Width	≧20 ft	1
		- Side Slopes:		
	ļ	Upstream Side	3:1	
<u> </u>	┫	Downstream Side	2:1	
Rock Dam	•	Earthen Embankment:		Figure 5
(Proposed Flood Protection		– Length	682 ft	
Level)		- Top Elev.	33.8 ft-NGVD	
		- Side Slopes:		

Table 4-1 SYSTEM COMPONENT DESIGN SUMMARY

System Component	Design Data	Plans and Details
	Upstream Side 3:1	
	Downstream Side 2:1	
	 Access Bench: 	
	Elevation 20 ft-NGVD	
	Width (typ) 20 ft	
	MSE Wall:	l
	– Length 660 ft	
	– Top Elev. 34 ft-NGVD	
	– Base Elev. 20.5 ft-NGVD	
	 Top Berm Width (typ) 10 ft 	
	– Facing Segmental Concrete Block	
Inglis Lock	Lock Chamber:	
]	– Length (nominal) 600 ft	
	– Width (nominal) 84 ft	
]	– Bottom Elev. (-)14 ft-NGVD	
	– Draft (min) 12 ft	
}	• Upstream Pool $24 \rightarrow 28$ ft-NGVD	
	• Downstream Pool $(-)3 \rightarrow 9.6 \text{ ft-NGVD}$	
	Miter Gates:	
	– Top Elev. 31.5 ft-NGVD	
	– Tail Gate Height 47.5 ft	
	- Head Gate Height 21.5 ft	
Bypass Channel	Length 8,500 ft	Figure 6
	Bottom Width 5 ft	
	• Side Slopes 3:1	
	Bottom Elev. 12 ft-NGVD	
	• Top of Bank Elev. (typ) ≥ 30 ft-NGVD	
Bypass Channel Spillway	Hydraulic Design Condition:	Figure 7
	 Design Discharge 1,100 cfs 	}
	 Maximum Discharge 1,540 cfs 	
	 Headwater Elev. 25.9 ft-NGVD 	
	 Tailwater Elev. (tidal) 0.8 ft-NGVD 	
	Control Gates:	
	– Number 2	
	– Width x Height 14 ft x 7 ft	}
	Crest:	
	– Shape Ogee	
	– Elevation 21.0 ft-NGVD	
	– Net Length 28 ft	}
	Horizontal Apron Elev. (-)9.5 ft-NGVD	
Withlacoochee River -	Channel Length 6.5 mi	
Lower Segment	• Bottom Elev. $(-)6 \rightarrow (-)8 \text{ ft-NGVD}$	
	• Channel Slope 0.006%	
US-19 Bridge at	Number Spans 2	Figure 8
Withlacoochee River	Lanes Each Span 2	
l	Clear Span Length 215 ft	Į
	Low Chord Elev. 13.6 ft-NGVD	
US-19 Bridge at Barge Canal	Number Spans	Figure 9
(existing)	Lanes Each Span 2	
	Clear Span Length 1,694 ft	
	Bridge w/Abutments 4,100 ft	
	Vertical Clearance 65 ft	
US-19 Bridge at Barge Canal	Number Spans	Figure 9

Table 4-1 (Continued)SYSTEM COMPONENT DESIGN SUMMARY

System Component		Design	Data	Plans and Details
(proposed)	•	Lanes Each Span	2	
	•	Clear Span Length	753 ft	
_	•	Vertical Clearance	40 ft	
Lock Access Road Bridge at • Lanes 2		Figure 10		
Bypass Channel • Hydraulic Design Condition		Hydraulic Design Condition:		
		 Design Discharge 	1,540 cfs	
	}	 Headwater Elev. 	26.9 ft-NGVD	
		- Tailwater Elev. (tidal)	26.5 ft-NGVD	
	•	Box Culvert:		
	1	 Number of Openings 	3	
	ļ	 Width x Height 	12 ft x 12 ft	
		 Invert Elev. 	16 ft-NGVD	

Table 4-1 (Continued)SYSTEM COMPONENT DESIGN SUMMARY

• • •

5 ADDITIONAL INFORMATION AND LAND SURVEY REQUIREMENTS

The Additional Information and Land Survey Requirements task was conducted as part of Task 1.1.2.4 Identification of Surveys to be Performed, defined in the scope-of-work.

5.1 Introduction

Available data were collected and assessed as part of Task 1.1.2.1. Critical additional data survey needs for studies to be conducted under Work Order 1 and Work Order 2 of this project have been identified as part of Task 1.1.2.4. These additional data and survey needs are summarized briefly below:

- Long-term tide data for the mouth of the Withlacoochee River and Barge Canal,
- Land survey data of river and barge canal cross-sections to refine existing data,
- Land survey data of Bypass Channel cross-sections,
- Land survey to support structure siting studies, and
- Property data to support the land acquisition and cost assessment.

Section 5.2 below provides a detailed purpose and description of the additional data required. Section 5.3 provides a summary table of the required data as well as estimated cost for data and survey acquisition. Please note that design data for existing structures and bridges associated with the Cross-Florida Barge Canal system will be taken from available design documents.

5.2 Description of Data Required

Tide Data

Long-term tide data will be acquired for the mouth of the Withlacoochee River and Barge Canal. Data will be obtained from NOAA for the Cedar Key Station (ID 8727520), and will be adjusted-to represent tidal conditions in the Barge Canal and the Withlacoochee River at or near the mouth of each system.

This tide data will be used, as the downstream boundary condition for the hydraulic models that will be developed to assess impacts to natural systems and water quality in the river and canal. Additionally, portions of the time series will be used as the downstream boundary conditions for the flood impact assessment and navigation assessment. Hourly data for years 1960, 1982, 1993, 1996, and 1999 will be requested from NOAA. The estimated cost of this data acquisition is \$75, based on correspondence with NOAA personnel.

Land Survey Data

Land survey data will be required at a number of locations in support of the hydraulic and siting studies that will be conducted as part of Work Order 2 of this project. Previously developed

hydraulic models of the Withlacoochee River and Barge Canal system in the West Terminus area were used to assess flooding that would occur due to a failure of Inglis Dam. The cross-sectional configuration of the main channel was of relative less importance than that of the overbank areas, as most of the flow was conveyed in the overbank areas for these high flow studies. **Figure 11** illustrates the location of cross-sections used in the previous studies.

The existing models will be refined to include more accurate main channel data as part of the West Terminus study. This will be done to improve the accuracy of long-term low flow simulations that will be conducted as part of the natural systems and water quality assessments. To accomplish this, bank-to-bank surveys at selected cross-sections (20) in the Withlacoochee River, Barge Canal and Bypass Channel will be conducted, and the new information incorporated into the models. **Figure 11** illustrates the location of the cross-sections that will be surveyed as part of this study.

It should be noted that Cross-Sections 21 and 29 would be extended beyond the Barge Canal top of channel bank to include the adjacent spoil berms on each side. This will be done to aid in the siting of control and lock structures, which will be evaluated as part of this study. Additionally, Cross-Sections 33 through 35 will be entirely new sections developed as part of this study. At present cross-sections are not available for the Bypass Channel. Cross-Sections 33 through 35 will also be extended a sufficient length beyond the existing top of bank to facilitate potential design improvements to the Bypass Channel. The remaining 15 cross-sections will extend from bank to bank.

A preliminary estimate by a surveyor familiar this the West Terminus area indicates that the survey work described above will cost approximately \$13,000.

Property Data

The Barge Canal and adjacent spoil areas are owned by the State of Florida. Any proposed structures that are to be sited in the Barge Canal are assumed to have no property acquisition issues. This study also includes assessing potential structural revisions to the Bypass Channel Control Structure and Bypass Channel. Areas north of this system are under private ownership. In order to assess property acquisition and development costs of any potential alternatives, information concerning property boundary and ownership must be acquired for the affected areas.

Property data will be collected from the appropriate municipality or county Tax Assessor once the affected areas are determined. Data on property ownership and parcel boundary will be taken from available records. Property boundary surveys will not be conducted as part of this data collection effort. In previous work conducted by URS in this locality, a survey subcontractor was used to conduct a similar data collection exercise. A preliminary estimate by a surveyor familiar this the West Terminus area indicates that the property data collection described above will cost approximately \$2,000.

5.3 Summary Data Table and Estimated Costs

The following table is a summary of the additional data that is anticipated to be required to complete the proposed studies in Work Orders 1 and 2 of this project. These information

requirements are based on the work completed to date and may change as additional work is completed.

Table 5-1	
ADDITIONAL INFORMATION REQUIREMENT SUMM	4RY

Required Data	Estimated Cost
Tide Data:	
• Cedar Key Tide Gage (NOAA Station 8727520), hourly data	
for years 1960, 1982, 1993, 1996, and 1999.	\$75
Land Survey Data	
• Selected bank-to-bank cross-sections including four (4) on	
the Upper Withlacoochee River segment, ten (10) on the	
Lower Withlacoochee River segment and three (3) on the	
Barge Canal,	
• Cross-sections (3) on the Bypass Channel and adjacent	\$13,000
areas,	
• Survey of selected overbank areas to support structure	
siting	
Property Data	
• Property data collection for areas adjacent to Bypass	
Channel System to support the land acquisition and cost	\$2,000
assessment.	
Total	\$15,075

A detailed survey and data collection scope of work will be prepared during Work Order 2 of this project. This scope of work will be provided to the survey subcontractor and will be used as a basis for a cost proposal.

• • •

6 HYDROLOGIC STUDIES

The Hydrologic Studies task was conducted as part of Task 1.1.2.5 Update Watershed Parameters defined in the scope-of-work.

6.1 Background

The hydrologic studies conducted as part of this task will be used in support of the restoration alternatives analysis, which will be conducted under Work Order 2 of this project. This task builds upon the hydrologic studies conducted as part of previous studies of the Cross Florida Barge Canal system and includes the following subtasks:

- Long-term flow assessment,
- Flood flow assessment for a selected flood frequency, and
- Tidal assessment.

Hydrologic analyses were conducted to determine long-term flow and flood flow hydrographs for the segment of the Withlacoochee River downstream of Inglis Dam. These hydrographs will be used as input to the hydraulic routing models, which will be developed under Work Order 2. Hydrographs were developed for the baseline condition (Alternative 4), which simulates the system as it exists today. Hydrographs were also developed to assess the proposed restoration alternatives condition (Alternatives 1, 2 and 3), which are described in Section 1.2 of this report. The development of long-term flow and flood flow hydrographs is described in detail in the following sections.

It is important to note that baseline conditions (Alternative 4) were determined from Lake Rousseau discharge data for the long-term flow analysis and from adjusted reservoir inflow data for the flood flow analysis. The Lake Rousseau <u>discharge</u> data most accurately represents baseline conditions. However, discharge data were not available for the selected flood frequency, thus inflow data were used to estimate reservoir discharge for the flood flow analysis. For the remaining alternatives (Alternatives 1, 2, and 3) reservoir discharge hydrographs were developed from adjusted reservoir inflow data. This reservoir inflow data most accurately represents the system under alternative conditions, as it is free from the operational influences due to discharge from Inglis Dam main gates and the bypass channel.

Hydrologic analyses were also conducted to determine tidal conditions in the Withlacoochee River. This tidal information was used to develop tide stage hydrographs for long-term flow and flood flow model simulations. These tide stage hydrographs were used as downstream boundary conditions in the simulation models. The development of the tide stage hydrographs for long-term flow and flood flow simulations is described in detail in the following sections.

6.2 Data

The long-term flow and flood flow hydrographs used in this study were developed from existing streamflow records from the U.S.G.S. gaging stations listed below. Figure 12 illustrates the location of the selected gage stations. The first two gages listed below measure the majority of

the water that flows into the Lake Rousseau reservoir. The latter two gages measure discharges from the reservoir to the Withlacoochee River downstream reaches from the Inglis Dam and the Bypass Spillway respectively.

- 1. Withlacoochee River near Holder, USGS Station No. 02313000
- 2. Rainbow Springs near Dunnelon, USGS Station No. 02313100
- 3. Withlacoochee River at Inglis Dam Near Dunnellon, USGS Station No. 02313230 (Main Gates)
- 4. Withlacoochee River Bypass Channel near Inglis, USGS 02313250

Tidal stage hydrographs for the proposed tidal boundary at the Gulf of Mexico were developed from data obtained for the NOAA Cedar Key tide station (NOAA Station No. 8727520). Hourly tide data were estimated for several years (1960, 1996) by NOAA. NOAA also made estimates of tidal variations at the mouth of the Withlacoochee River from data for the Cedar Key station.

6.3 Long-Term Flow Hydrographs Assessment

Long-term (one-year duration) daily flow hydrographs representative of the "Average Year" condition were selected for use in the natural systems and water quality modeling assessments. Mean annual streamflow, which is a volumetric indicator was used as basis for its selection. Separate hydrographs were developed for the baseline condition and the alternatives condition as described below in Sections 6.3.1 and 6.3.2.

The statistically "Average Year" was determined by analyzing 75 years of record from the USGS gaging station near Holder, Florida (No. 02313000). This gage has the longest record of all of the gages selected for use in this study, and accounts for flows from 89 percent of the Lake Rousseau watershed. The time series of mean annual streamflows was analyzed by using the Weibull formula:

p = m / (n+1)

where p is the probability, m is the ranking position, and n is the number of data points.

The Weibull formula was used to identify years with flows corresponding to 50 percent probability or median year. For the purpose of this study, it is assumed that the median year represents the "Average Year" condition. The flow hydrograph for year 1987 with a mean annual flow of 908 cfs has a 49 percent occurrence probability, and was the closest to 50 percent probability. However, the annual flow distribution was atypical due to an event that produced a flow of over 3,000 cfs in April with the remainder of the year having relatively low flows. The flow hydrograph for year 1996 with a mean annual flow of 877 cfs has a 47 percent occurrence probability and a reasonable annual flow distribution. For this reason, the 1996 flow hydrograph was selected for use in this study as the "Average Year" condition. Figure 13 shows a comparison of the 1987 and 1996 flow hydrographs for the USGS gaging station near Holder, Florida. It should be noted that 910 cfs is the computed mean annual flow of 877 cfs has about 3.6 percent less volume of flow than the statistically median year.

6.3.1 Alternative 4, Baseline Condition Hydrograph

As described above, the "Average Year" flow condition was determined to be 1996. The longterm flow hydrograph for the baseline condition (Alternative 4) was determined from Lake Rousseau discharge data. Presently, discharge occurs from Lake Rousseau from two locations, the main gates and the Bypass Channel spillway system. These discharge locations have the associated USGS gage stations listed below:

- USGS Station No. 02313230 (Main Gates)
- USGS Station No. 02313250 (Bypass Channel)

The flow records for year 1996 were extracted from the period of record for each of the gage stations listed above. **Figure 14** illustrates the "Average Year" flow hydrograph selected for use in the long-term simulations. These hydrographs represent discharges from Lake Rousseau, which will be used as the upstream boundary condition in the simulation models.

6.3.2 Alternatives 1, 2, and 3 Hydrographs

The alternatives proposed as part of this study require a change in the manner in which water is discharged from Lake Rousseau relative to the baseline condition. Proposed modifications to the system that will be assessed include making the Inglis Dam main gates the primary discharge point for the system and re-sizing the Bypass Channel system. This reservoir outflow will be manipulated in the hydraulic study to determine its destination (i.e. all directly to the Withlacoochee, or a portion to the Bypass Channel etc.). For the alternatives modeling, the total potential outflow from the reservoir is required. The potential outflow may therefore, be different from the baseline condition due to different gate manipulations to meet downstream demand criteria. The potential discharge for use in the alternatives assessment should then be an estimate of outflow without current reservoir spillway system manipulations. The long-term flow hydrograph for the Lake Rousseau outflow was determined as described below.

Again, the "Average Year" flow condition was determined to be 1996. Total potential discharge (outflow) from the reservoir was determined by combining the 1996 daily flows at the Withlacoochee River near Holder (USGS Station No. 02313000) with the daily flows at Rainbow Springs near Dunnelon (USGS Station No. 02313100). This composite hydrograph represents the total potential **measured** inflow into the reservoir. The total potential discharge from the reservoir was computed by adjusting this composite hydrograph by a factor of 1.05. This factor was determined by comparing discharge volumes for the existing condition reservoir outflow (combined main gate and bypass channel discharge) with the total potential **measured** inflow. This comparison indicated that for the year 1996 about five percent more runoff volume discharges from the reservoir than could be accounted for by the measured inflow. This difference can be attributed primarily to the additional catchment area downstream of the Holder station, which drains to the reservoir. This catchment area accounts for about 11 percent of the total watershed area. This factor also accounts for evaporation or other losses.

6.4 Flood Flow Hydrographs Assessment

Flood flow hydrographs representative of the 100-year flood frequency were selected for use in the flood assessment. Separate hydrographs were developed for the baseline condition and the alternatives conditions as described below.

6.4.1 Selection of Flood Event

The statistically derived "100-year" flood flow was determined by analyzing 75 years of record from the USGS gaging station near Holder, Florida (No. 02313000). This gage has the longest record of all of the gages selected for use in this study, and accounts for flows from 89 percent of the Lake Rousseau watershed. The 100-year flood discharge was determined using a time series of annual peak instantaneous discharges that were fitted to the Log Pearson Type III Frequency Distribution. The results of this analysis are presented in Table 6-1, which provides a summary of estimated flood frequency versus flow rate for a series of flood frequencies from the two (2) to 200 year return period.

Return Period (yrs)	Flow (cfs)
2	2,132
5	3,638
10	4,758
20	5,906
50	7,488
100	8,741
200	10,046

 Table 6-1

 FLOOD FREQUENCY ANALYSIS FOR WITHLACOOCHEE NEAR HOLDER

As indicated in Table 6-1, the 100-year flood flow rate is estimated to be 8,741 cfs. The time series of annual peak instantaneous discharges for the 75-year period of record were examined to determine if there was a corresponding flood flow rate in the data. The closest flow rate in the data, is a peak flow of 8,660 cfs, which occurred on April 5, 1960. This measured flow is approximately 99 percent of the estimated 100-year flow calculated from the frequency analysis. Next, the hydrograph of the event associated with the April 5, 1960 peak flow was examined for reasonableness. The hydrograph of this event has a time base of approximately 75 days and appears to be reasonable in terms of its shape. No other precipitation events of any significance occurred during this period. It should be noted that the Withalcoochee River system, by virtue of a large amount of floodplain storage, has relatively long peak lag times associated with it. The flood event that culminated with a peak flow of 8,660 cfs on April 5, 1960 was selected for use in this study as the 100-year flood frequency.

Hourly flow data is typically desirable for detailed hydraulic modeling such as that proposed for use in this study. However, hourly flow records were not available for the selected USGS gage. Therefore, an assessment was conducted to determine the suitability of using average daily flows in this study. A comparison of maximum instantaneous peak flows with daily average flows for a

Southwest Florida water Management District West Terminus - Cross-Florida Greenway Assessment

number of data points was conducted for this assessment. The results of this comparison showed that the instantaneous peak flows compared well with the daily average flows in most instances. This is due primarily to the size and characteristic of the Withlacoochee River watershed, which produces long flood duration's with peak flow rates well in excess of one (1) day. The daily flow data available for the selected USGS gage (Station No. 02313000) were therefore found acceptable for use in the analysis.

6.4.2 Reservoir Inflow and Discharge Hydrographs

The lake Rousseau reservoir receives flow contributions form three major sources. Two of the sources are gaged including the USGS station near Holder, Florida (No. 02313000) and the USGS Rainbow Springs station near Dunnelon, Florida (No. 02313100). The third inflow consists of runoff from the area surrounding the lake, which is downstream of the Holder gage. The flow contribution measured at the Holder gage is the dominant inflow, with approximately 89 percent of the total contributing watershed to the reservoir being upstream of the gage. The directly contributing ungaged areas surrounding the lake accounts for approximately 11 percent of the total watershed. Rainbow Springs, which has no contributing drainage area, contributes lesser flows than the river at Holder. Flows from each of these sources must be considered in the development of an inflow hydrograph for the lake.

As described above, data from the USGS station near Holder, Florida (No. 02313000) was used to conduct the frequency analysis and to select a 100-year flood event (April 5, 1960). It should be noted that gage data were not available for any of the other three gages used in this study for 1960. As such, flow contribution from Rainbow Springs as well as the areas surrounding the lake for the 100-year flood had to be estimated.

Flood flows for Rainbow Springs were estimated from available gage data for the period of record 1970 to 2002. The highest flow on record (1,060 cfs), which occurred on September 19, 1998, was selected for use in the study. It was assumed that the 1998 daily hydrograph for Rainbow Springs was similar to the 1960 Rainbow Springs daily hydrograph. The assumption that the 1960 flow from Rainbow Springs could be estimated from the 1998 records was based on the fact, that flood flow from the springs is relatively constant in comparison to the river flow. In support of this assumption, it was found that the second highest peak flow at the Holder station occurred on March 21, 1998 and had a magnitude of 5,310 cfs, while the measured flow at Rainbow Springs on this date was 1,030 cfs, which is only 30 cfs different from the measured 1,060 cfs maximum on September 19, 1998.

The daily flow hydrograph for the 100-year event as documented in Section 6.4.1, was added to the daily flow hydrograph for Rainbow Springs (1998) for a similar time base. This was accomplished by superimposing one hydrograph on the other and by assuming peak flows were coincident. This composite hydrograph represents the estimated total **measured** inflow into the reservoir.

This hydrograph was further adjusted to determine the **estimated** total potential outflow from the reservoir. The estimated total potential outflow was computed by adjusting this measured inflow hydrograph by a factor of 1.04. This factor was determined by comparing annual volumes of measured inflow with reservoir outflow volumes from the combined Inglis Dam main gates and
Bypass Channel spillway. These reservoir discharge volumes were determined from the USGS gage stations at each of these locations. The comparison indicated that the measured inflow hydrograph should be incremented by about four (4) percent to account for the ungaged contributing areas and to account for evaporation and other losses from the lake. The estimated 100-year event, total potential discharge hydrograph for the Lake Rousseau system is illustrated on Figure 15.

6.4.3 Alternative 4, Baseline Condition Hydrograph

The estimated 100-year event, total potential discharge hydrograph for the Lake Rousseau system was used to estimate discharge from the system under baseline conditions. For baseline conditions discharge would occur from the Inglis Dam main gates and from the Bypass Channel system via the spillway. For this analysis, it was assumed that the bypass channel would be operated at its maximum discharge capacity of 1,540 cfs. Thus, the remaining flow (8,660–1,540 = 7,210 cfs) would be discharged from the main gates, which have a design capacity of approximately 18,000 cfs. The Inglis Dam main gate discharge hydrograph was constructed by subtracting the constant 1,540 cfs flow (Bypass System) from the total potential discharge hydrograph and the Bypass Channel discharge hydrograph.

6.4.4 Alternative 1, 2, and 3, Proposed Conditions

As indicated in Section 6.3.2, the alternatives proposed as part of this study require a change in the manner in which water is discharged from Lake Rousseau relative to the baseline condition. Proposed modifications to the system that will be assessed include making the Inglis Dam main gates the primary discharge point for the system and re-sizing the Bypass Channel system. This reservoir outflow will be manipulated in the hydraulic study to determine its destination (i.e. all directly to the Withlacoochee, or a portion to a Bypass Channel etc.). For the alternatives modeling, the total potential outflow from the reservoir is required. The total potential discharge hydrograph for the Lake Rousseau system is the hydrograph that will be used to assess Alternatives 1 and 2. Figure 16 illustrates the discharge hydrograph that will be used for these alternatives. Alternative 3 requires increasing the discharge capacity of the Bypass Channel system will be determined as part of this study. The allowable discharge hydrograph for the Lake Rousseau system will be abstracted from the total potential discharge hydrograph for the Lake Rousseau system will be abstracted from the total potential discharge hydrograph for the Lake Rousseau system will be abstracted from the total potential discharge hydrograph for the Lake Rousseau system will be abstracted from the total potential discharge hydrograph for the Lake Rousseau system will be abstracted from the total potential discharge hydrograph for the Lake Rousseau system will be abstracted from the total potential discharge hydrograph.

The potential outflow for the alternatives may therefore, be different from the baseline condition due to different gate manipulations to meet downstream demand criteria. The potential outflow for use in the alternatives assessment should then be an estimate of outflow without current reservoir manipulations. The long-term flow hydrograph for the Lake Rousseau outflow was determined as described below.

6.5 Tide Stage Hydrographs

An analysis was conducted to determine tidal conditions in the Withlacoochee River. This tidal information was used to develop tide stage hydrographs for long-term flow and flood flow model

simulations. The tide stage hydrographs were used as downstream boundary conditions in the simulation models.

Tidal stage hydrographs for the boundary at the Gulf of Mexico were developed from the NOAA Cedar Key tide station (NOAA Station No. 8727520). Hourly tide data were estimated for several years by NOAA. NOAA made estimates of tidal variations at the mouth of the Withlacoochee River from data for the Cedar Key station. NOAA's estimates were provided in Mean Lower Low Water datum (MLLW) and were converted to NGVD by using the relationship between NGVD and MLLW for Cedar Key.

6.5.1 Long-term Flow Assessment

Hourly tide data for the year 1996 was selected for use in the long-term flow assessment. This year was selected to correlate with the "Average Year" condition for the Withlacoochee River system as detailed in Section 6.3. Figure 17 illustrates the first 50 days of record for the 1996 tidal variation of the Withlacoochee River near the mouth. The maximum tide stage during the year was 5.88 ft-NGVD and occurred on June 30, and the minimum was tide stage was 0.48 ft-NGVD and occurred on January 18. This information will be used as the downstream boundary condition for all of the proposed alternatives assessments of natural systems and water quality.

6.5.2 Flood Flow Assessment

Hourly tide data for the year 1960 was selected for use in the flood flow assessment. This year was selected to correlate with the 100-year flood event on the Withlacoochee River system as detailed in Section 6.4. This information will be used as the downstream boundary condition for all of the proposed alternatives assessment of flooding.

G:\WATER\Projects\SWFWMD Projects\SWFWMD West Terminus CFBC\Report\Final Report\REPORT-Work Order 1 Rev-2.doc

FIGURES

.

. .

Drowing Name: G:/WATER/Projects/SWFMAD Projects/SMFMAD West Terminus CFBC/Report/Droft Report/Flgures/Figure X.dwg Lust Madilied: Nav S1, 2003 - 2:21pm by tpade

Drowing Mome: G: YWATERP.Projects/SWFMMD Projects/SWFMMD West Terminus CFBC/Report/Draft Report/Figures/Figure Drowing Mome: G: YWATERP.Projects/SWFMMD Projects/SWFMMD West Terminus CFBC/Report/Draft Report/Figures/Figures

AL AL TE AL AL TE AL <
--

Lost Modified: Nov 21, 2003 – 1:41pm by tpadr Orowing Name: 6: (WATER/Projecis/SWEWAD Projecis/SWEWAD West Termious CFBC/Report/Oroft Report/Figures/Figure 9.dwg

Drawing Name: G:/WATRA?Projects/SWFMMD Projects/SWFMMD West Terminus CFBC/Report/Draft Report/Figures/Figure 10.dwg Last Madified: Nov 21, 2003 - 1:41pm by tpadr

Drawing Name: 0:/WATER/Projecta/SWEMMD Projecta/SWEMMD Weat Terminus CFBC/Report/Sraft Report/Figures/Figure 14.0mg

Dowing Name: 3: /W/IFR/Projects/SW-WUD Projects/SW-WED West Terminus CFBC/Report/Sroll Report/Figures/Figure 17.dwg Loss Nounised: Nov 25: 2003 — 11:16am by tpode

APPENDIX A

FIELD RECONNAISSANCE SUMMARY – SEPTEMBER 12, 2003

.

WEST TERMINUS – CROSS FLORIDA GREENWAY ASSESSMENT Field Reconnaissance Summary – September 12, 2003

- Attendees:
 - Lisann Morris/SWFWMD
 - Dale Ravencraft/SWFWMD
 - Joe Ruperto/URS
 - Mike Walters/URS
 - Kevin Conner/URS
 - Jim Wolfe/FDEP-OGT
- Met at 10:15 a.m.
- Spoke to Mayor of Inglis:
 - Only minor flooding problems in Inglis due to Withlacoochee River.
 - Mayor specifically identified Palm Circle Dr., south of SR-40 and east of US 19.
- Visited Palm Circle Drive in the afternoon:
 - Review of mapping indicates that ground elevation in the vicinity of residential buildings is 9 ft. Riverbank elevation is 5 ft, and yard elevations range from 5 ft to 8 ft.
- Visited Yankeetown Town Hall:
 - Met with Fire Department Lt. Rob Kubustek to discuss local tide induced flooding.
 - Rob indicated that the tides in Yankeetown are not well represented by the nearest NOAA tide guage. He believes there are timing and height differences.
 - Rob offered to provide his tide information.
 - Contact numbers:
 - (352) 447-0118 (home)
 - (352) 447-4643 (office)
 - (352) 506-0008 (pgr)
 - Received a copy of the Yankeetown Watershed Management Plan by JEA. There are two areas indicated to flood by tidal influence including:
 - 1 West end of town in the vicinity of Magnolia, and
 - 2 Town center between 62nd and 66th Streets.
- Visited the sites indicated above in the morning:
 - In general Hickory Ave., Magnolia Ave and Palm Dr. are very low. River bank elevations as well as yard elevations are below elevation 5 ft. See Photos 1 through 6.
 - 22 Palm Dr. (McCrimmon) has a Finished Floor E1= 7.01 ft. The owner provided the following information:
 - Had 1ft water in house 1993, and
 - Had 1"-2" water in house 1996
 - Marina at Hickory, see Photo 7.

- The area on Riverside Drive between 63rd and 64th Streets (north side) is all below elevation 4 ft with the riverbank at or below elevation 5 ft. See Photo 8.
- Visited Coast Guard Station.
 - See Photo 9.
- Visited the Rock Dam Construction Site and the Bypass Channel Spillway.
 - See Photos 10 through 12.
 - Note that spillway was releasing 1,540 cts allowable maximum.
- Visited Inglis Lock.
- Visited Inglis Dam.
 - See Photo 13.
- Visited the upper segment of the river just below the dam via Dawnflower Ave. and Deoder.

Photo 1: House on Magnolia Avenue with stain line.

Photo 2: Canal on east side of Magnolia Avenue, Rob Kubistek residence.

Photo 3: Canal at Magnolia Avenue terminus looking south towards river.

Photo 4: Looking west across canal at above location.

Photo 5: Canal at Palm Drive terminus looking southwest towards river.

Photo 6: Looking west across canal at above location.

Photo 7: Hickory Avenue Marina looking north towards wetland on right bank.

Photo 8: Depressional area at Riverside Drive and 64th Street.

Photo 9: Coast Guard Station w/SWFWMD gage.

Photo 10: Confluence of Barge canal at Upper Segment Withlacoochee River.

Photo 11: Rock Dam construction site looking at west spoil bank tie in.

Photo 12: Rock Dam construction site looking at east spoil bank tie in.

Photo 13: Inglis Dam main gates.

HYDROLOGIC ANALYSIS DOCUMENTATION

.

APPENDIX B

NOAA'S NATIONAL OCEAN SERVICE CENTER FOR OPERATIONAL OCEANOGRAPHIC PRODUCTS AND SERVICES

TO:

Products and Services Division

1305 East-West Highway SSMC Bldg. # 4 – N/OPS3 Silver Spring, MD 20910-3281 301-713-2815 301-713-4500 (fax) http://www.tidesandcurrents.noaa.gov

Michael Walters URS 7650 West Courtney Campbell Causeway Waterford Plaza, Suite 700 Tampa, FL 33607-1462 DATE:October 1, 2003ACCOUNT#:04-0001LOG#:10331

Todd Ehret Physical Oceanographer for Tide & Tidal Current Predictions E-mail: <u>Todd.Ehret@noaa.gov</u>

**** IMPORTANT NOTICE ****

The enclosed data are based upon the latest information available as of the date of your request. The official Tide and Tidal Current prediction tables are published annually on October 1, for the following calendar year. Tide and Tidal Current predictions requested prior to the publishing date of the official tables are subject to change. Please check the information provided to insure completeness and readability of hard-copy and electronic media. This is not an invoice. Please retain a copy of this page for reference on future requests.

Enclosed:

Tide predictions at "Withlacoochee River Entrance, Florida" for

- 1960
- 1982
- 1993
- 1996
- 1999

Provided on diskette in International Format, 24-Hour Clock, Daylight Saving Time.

Please Note: These predictions are based on the latest information we have available for the station at "Withlacoochee River Entrance, Florida". These predictions may not match the published predictions for these dates.

An invoice for \$65.00 has been mailed separately.

ion
; vei
Wai
1-0 <u>,</u>
Ń
2

.+

ëe

Center for Operational Oceanographic Products and Services (CO-OPS)

Station Information for Cedar Key, FL

Water Level Station Information:

Station Name: Cedar Key, FL

Station Identification Number: 8727520 Latitude: 29° 8.1' N Longitude: 83° 1.9' W Date Established: Mar 12 1914 Maximum Water Level: 5.15 ft. above <u>MHHW</u> (10/07/1996) Minimum Water Level: -4.21 ft. below <u>MLLW</u> (09/18/1947) <u>Mean Range</u>: 2.83 ft. <u>Diurnal Range</u>: 2.83 ft. <u>Diurnal Range</u>: 3.80 ft.

EPOCH Update Information: NEW

Bench Mark Data Sheet: Click HERE

http://tidesandcurrents.noaa.gov/cgi-bin/station_info.cgi?stn=8727520+Cedar+Key,+FL

N VN 70-1 Wai svei	ion	ige .
EPOCH Datum Comparison:	Click HERE -	check datum differences between the old epoch (1960-1978) and the new epoch (1983-2001)
Superceded Bench Mark Data Sheet:	Click HERE -	bench mark sheet on the old Tidal Datum Epoch (1960-1978)
Superceded Datums:	Click HERE -	datums on the old Tidal Datum Epoch (1960-1978)
Mean Sea Level Differences List:	Click HERE -	mean sea level differences between the two epochs for all stations.
Mean Sea Level Difference: for 8727520 Cedar Kev, FL	1983- 2001	1960- Difference:
	3.84 ft.	3.70 ft. 0.14 ft.
Data Types Available:		
Primary Water Level Backup Water Level Wind Air Temperature Water Temperature Barometric Pressure		
Current Water Level Data	a Plot	

 $http://tidesandcurrents.noaa.gov/cgi-bin/station_info.cgi?stn=8727520+Cedar+Key,+FL to the station_info.cgi?stn=8727520+Cedar+Key,+FL to the station_info.cgi$

9/24/03

Ĺ

+

ige.

Retrieve Data Listing

Data Inventory Station Data Plots Water Level Data Listing (preliminary) Water Level Data Listing (historical) Meteorological/Oceanographic Data Listing

Location:

http://tidesandcurrents.noaa.gov/cgi-bin/station_info.cgi?stn=8727520+Cedar+Key,+FL

r, v.N. 70-, Wa, even ion ige	.,
To reach the tidal bench marks from the Post Office at Second Avenue and C Street in Cedar Key, proceed SE on C Street for 0.03 km (0.2 mi) to Levy County Pier. The bench marks are in the area between the Fish House and G Street going east/west and between Whiddon Street and the county pier going north/south. The tide gauge and staff are at the NW end of the restroom building near the foot of the pier.	
Station Location Map	
Click <u>HERE</u> for Map (Not for navigational use)	
For other questions contact us at:	
NOAA, National Ocean Service Center for Operational Oceanographic Products and Services (CO-OPS)Telephone: Fax:1-301-713-2877 or 2890 	
 Home * PoRTS * Predictions * Diservations * Each Marks * FAG Publications * Product Info. 	
http://tidesandcurrents.noaa.gov/cgi-bin/station_info.cgi?stn=8727520+Cedar+Key,+FL	24/03
te "S/A Elet n Di Trap.

Date created Wed Sep 24 09:55:21 EDT 2003

, ige

Elevation Information for PID = AR1204, VM = 751 Station_ID --- 8727520

í

http://www.ngs.noaa.gov/cgi-bin/ngs_opsd.prl?PID=AR1204

$\tilde{\omega}$	© 5						 20/11/03
age	Data Category: Geographic Area: Site Information Stream		data reliability DER, FLA.			Site map.	GS
.R		;	K HOL	on site map			y_cd=US
HC		c	ntorma ER NF	Static)27 9		kagenc
/ER			E TOL I	nis site	9" NAE		2313000
HEL		: : 9	ICK HEI CHEE	l for th	32°20'59 niles level N	orida.	te_no=0
ACC		Drid		ie data	100208 gitude 8 quare n	ite in F	smap/?si
WI'.		·FIC	THLA	vailabl	lorida Code 03 ", Long 20.00 s feet ab	of the si	iwis/nwi
313	ß	for	1W 0	A	unty, FJ Unit C 3°59'19 ea 1,82 1 27.52	ation o	gov/fl/r
JSC	source	Map	231300		ion Cou Irologic tude 28 inage ar e datum	Loc	lata.usgs
lap	ater Re	te I	GS 02		Mar Hyd Lati Drai Gag		 ://watero
ړ ټ	>	S	SU				http

http://waterdata.usgs.gov/fl/nwis/nwismap/?site_no=02313000&agency_cd=USGS

5	S				9/17/03
, age	Area:				
	<mark>Jraphic</mark> Ja				
	Geog		GO		
	tegory: nation				
	ata Cal	ty			
		eliabili FLA.			
		data re JER,	eb		ß
		on on	home pa	08 029. 08 08 08 08 08 08 08 08 08 08 08 08 08	_cd=US
, F.		ormati R NR	Station	AD27, 331002 1 NGV 1 NGV 1 Date d Date 1-time 2-09-2(2-09-3)	agency_
IC		for inf UVEF	site)'59" N C Unit (C Un	13000&
)]		Here EE R	r this	e 82°20 rologic gin Da 32-09-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0-0	no=023
μ. Έ		<u>Click</u> OCH	ata fo	a , Hyde Beg 1929	n/?site_
ĒĒ		LACC	able d	9", Lo Florida miles s 27.52 s 27.52 <u>ww</u> Samp	nwisma
Ô		IHTI	Availa 0 n	28°59'1 AREA AREA Square Square Jater Vater TA: TA: TA: Duality Duality	fl/nwis/
.TT	se	W 000	criptic	TON THUN C AGE / 20.00 (D) D) D) D) D) D) D) D) D) D) D) D) D)	sgs.gov/
.130	esourc	2313(1 Desc	Date of the second seco	rdata.us
395	/ater R	SGS 0	tatior		p://wate
	S S	n	\mathbf{N}		htt

`agu ° 2	rings Office @usgs.gov	Top Explanation of terms			6/17/03
";G: '13(''IT. '20, ''EE. ''3R. '10L "., F.	SITE OPERATION: Site is located in Florida; record is maintained by Florida - Altamonte Spr CONTACT INFORMATION Email questions about this station to <u>gs-w-fl_NWISWeb_Data_Inquiries</u> (Questions about data <u>gs-w-fl</u> NWISWeb Data Inquiries@usgs.gov Feedback on this websitegs-w-fl NWISWeb Maintainer@usgs.gov ** USGS 02313000 WITHLACOOCHEE RIVER NR HOLDER, FLA. http://waterdata.usgs.gov/fl/nwis/nwisman?	Retrieved on 2003-09-17 08:37:11 EDT Department of the Interior, U.S. Geological Survey USGS Water Resources of Florida Privacy Statement Disclaimer Accessibility. 0.65 0.66		

http://waterdata.usgs.gov/fl/nwis/nwisman/?site_no=02313000&agency_cd=USGS

e G	OG					[]		=	6/11/0
15	Data Category: Geographic Area: Site Information Structure		ı reliability	N, FLA.	GO		Site map.		
ł			on data	ILLO	nap				SDSC
ON,			ation (UNNE	ion site n				cy_cd=l
NN			nform	AR DI	Stat	027 09)&agen(
EAF			e for i	S NEA	lis site	5" NAI			231310(
SNI		a	ick Her	RING	tor th	32°26'16 level N	lorida.		ite_no=0
M		orid	C	W SPI	e data	100208 jtude 8 ove sea	te in F		smap/?si
ZAI		·FIC		INBO'	vailabl	orida ode 03. ", Long feet ab	f the si		iwis/nwi
313	0	for		0 RA]	A	inty, Fl Unit C)°06'08 1 28.34	ation o		.gov/fl/n
JSG	sources	Aap		31310		ion Cot rologic tude 29	Loc		lata.usgs
ſap	iter Re	te N		GS 02		Mari Hyd Latit Gage			//waterd
(V)	Ň	Si		SU					http:

ړ ـ

Privacy Statement || Disclaimer || Accessibility **USGS Water Resources of Florida**

http://waterdata.usgs.gov/fl/nwis/nwismap/?site_no=02313100&agency_cd=USGS

5	C S S					CU// 1/6
àge	Data Category: Geographic Area: Site Information	eliability	, FLA.		amonte Springs Office	
		tion on data 1	NNELLON		7, 208 208 208 7D29. <u>787</u> 013787 013787 02624 7107 72624 7107 72624	cd=USUS
N,		nformat	R DU		NAD27 it 031000 vel NGV 001-10-2 002-09-3 099-09-0 ained by)&agency
INE		<u>re</u> for i	S NEA his site		°26'16" ogic Uni e sea lev 0-01 20 1-01 20 2-22 19 2-22 19 2-22 19	72313100
AR		lick He	RING a for th		Hydrolc Hydrolc et abov 1965-1 1965-1 1898-1 record i	site_no≓t
107		C	W SP		, Longi orida , J 8.34 fe 8.34 fe 8.34 fe lorida; J lorida; J	isman/ /s
S V.			JNBO vailab	- -	°06'08" arty, Fl E: E: A: A: A: A: A: A: A: A: A: A: A: A: A:	/wu/si/wu
AII.	S		00 RA A	riptio	ON N TYP N TYP N TYP N DAT Dat Bat ERAT is locat is locat	S.gov/II/
131	esource		23131	Desci	TE OP Site ONTA(data.usg
3 9 % :	Water R		USGS 0.	Station		http://watei

GGC 131, AII, V.S. VGU AR, INE N.	age	5
Email questions about this station to gs-w-fl_NWISWeb_Data_Inquiries@usgs.gov		
Questions about data <u>gs-w-fl_NWISWeb_Data_Inquiries@usgs.gov</u> Feedback on this website <u>gs-w-fl_NWISWeb_Maintainer@usgs.gov</u> ** USGS 02313100 RAINBOW SPRINGS NEAR DUNNELLON, FLA. http://waterdata.usgs.gov/fl/nwis/nwisman?	<u>Top</u> xplanation of terms	Alexandra Marina
Retrieved on 2003-09-17 08:37:50 EDT Department of the Interior, U.S. Geological Survey USGS Water Resources of Florida Privacy Statement Disclaimer Accessibility 0.64 0.63		
	·	
http://waterdata.usgs.gov/fl/nwis/nwisman/?site_no=02313100&agency_cd=USGS	//1/6	7/03

ugg	Data Category: Geographic Area: Surface Water 👻 Florida 👽 GO	la	formation on data reliability INGLIS DAM NR DUNNELLON, FLA.	Surface-water: Daily streamflow	From To Count 1969-10-01 2002-09-30 12053		cted Sites ng data for the sites meeting the criteria above:	YYY-MM-DD Blank = all data)
·· St *Iov site "nd	Water Resources	Daily Streamflow for Floric	Click Here for inf USGS 02313230 WITHLACOOCHEE R AT	Available data for this site	Levy County, Florida Hydrologic Unit Code 03100208 Latitude 29°00'35", Longitude 82°37'01" NAD27 Drainage area 2,020.00 square miles	Choose Output Format	Retrieve Daily streamflow data for Selec Choose one of the following options for displayi	I Retrieve data from: to: to: て、 (Y ・ 国 Graphs of data log scale 画 「 国 Tab-separated data [YYYY-MM-DD] Save to file

http://waterdata.usgs.gov/fl/nwis/discharge/?site_no=02313230

0	
9 Be	Explanation of terms
L Stri low site: nd Submit Heseh Heip	Questions about data gs-w-fl NWISWeb Data Inquiries@usgs.gov Feedback on this websitegs-w-fl NWISWeb Maintainer@usgs.gov Daily Streamflow 1 sites found http://waterdata.usgs.gov/fl/nwis/discharge? Retrieved on 2003-09-17 08:38:30 EDT Department of the Interior, U.S. Geological Survey USGS Water Resources of Florida Privacy Statement Disclaimer Accessibility 0.65 0.65

http://waterdata.usgs.gov/fl/nwis/discharge/?site_no=02313230

б	GO					_	 117/03
3ge	ategory: Geographic Area: rmation 😒 Florida		LLON, FLA.			p.	
Ŧ	Data Ca Site Info	llity	INNE	10		ite maj	
NO		reliabi	VR DI			S	
NN ¹		n data	AMN	ם שר שר			SGS
INI		ation o	LIS D				:y_cd=U
SI		uformá	ING	Oldin	027)&agenc
1 L'.		re for i	R AT	IIS SILE	1" NAI		2313230
ĨEĽ		a ick He	CHEE		\$2°37'0 iles	orida.	te_no=0
ACC		orid	C000	e data	100208 itude 8 quare m	te in Fl	smap/?si
WI'.		·FIC	LHLA	anao /	ida ode 03 ", Long 0.00 se	f the si	wis/nwi
313	10	for	O WI	A	y, Flor Unit C 1°00'35 ea 2,02	ation o	.gov/fl/n
JSC	sources	Aap	31323		y Count rologic ude 29 nage ar	Loc	lata.usgs
Iap	ater Re	te N	GS 02		Levy Hyd Latit Drai		//waterc
ړې	A	Si	SU				http:

Retrieved on 2003-09-17 08:38:49 EDT Department of the Interior, U.S. Geological Survey USGS Water Resources of Florida Privacy Statement || Disclaimer || Accessibility http://waterdata.usgs.gov/fl/nwis/nwismap/?site_no=02313230&agency_cd=USGS

رد ^م 2	Ö						9/17/03
ae	Data Category: Geographic Area Site Information 😿 Florida	bility	DUNNELLON, FLA.	CO.		nte Springs Office	
		ıta relia	I NR I			Altamo	
NC 1		n on da	DAN	me page		Count 33 91 91 orida -	=USGS
NI,		matior	GLIS	tation ho		D27, 0208 09-2613 09-2613 09-2613 011 1 by Flu	ency_cd
NK		r infor	VT IN	it e		1" NA t 0310 End 1 2002-(1999-(1999-(ntainec	230&ag
'S L		ere for	E R A	chis si		c'37'0 c'37'0 Date 01-21 03-21 is mai	023132
ΤΠ.		lick H	CHE	a for t		/drolog /drolog 1970-0 1969- 1963-0 1	site_no=
TEE		D	AC00	le dat		, Longi ida , Hy iles iles umples ATION	isman/?s
00			THLA	vailab	-	°00'35" y, Flori KEA E: E: A: A: A: A: CON/	nwis/nw
۰٬۱۲.	ñ		30 WI	Å	iption	ON Ude 29° GE AR GE AR N TYPJ N TYPJ N TYPJ Dats U Dats I V DAT ERATJ ERATJ ERATJ S locat	s.gov/fl/1
13.	 source		3132		Desci	CATI Latit Latit 2,02(2,02(2,02(2,02(2,02(2,02(1,0) 1,0) 1,0) 1,0) 1,0) 1,0) 1,0) 1,0)	lata.usg;
"SG"	ater Re		GS 02		tation	LC ST ST CO CO	://water
	M		SN		S		http

2				17/03
age	usgs.gov	<u>Top</u> Explanation of terms		1/6
TGS 132, TTH DOC EE, TIN 3 D, NR INE 'N'.	Email questions about this station to gs-w-fl_NWISWeb_Data_Inquiries@1	Questions about datags-w-flNWISWebDataInquiries@usgs.govFeedback on this websitegs-w-flNWISWebMaintainer@usgs.gov*** USGS 02313230 WITHLACOOCHEE R AT INGLIS DAM NR DUNNELLON, FLA.http://waterdata.usgs.gov/fl/nwis/nwisman?Retrieved on 2003-09-17 08:39:07 EDTDepartment of the Interior, U.S. Geological SurveyUSGS Water Resources of FloridaPrivacy Statement Disclaimer Accessibility0.640.640.64	·	http://waterdata.usgs.gov/fl/nwis/nwisman/?site_no=02313230&agency_cd=USGS

۱ ک ц Д 2 ž 111/ADS-sgen 11up.// wate

http://waterdata.usgs.gov/fl/nwis/nwismap/?site_no=02313250&agency_cd=USGS

3	CO					/17/03
age	ata Category: Geographic Area: ite Information Florida	ĥ	NGLIS FLA		e map.	6
FL		reliabili	L NR I		Sit	
INC		n data	ap			SGS
VEL		ation o	S CHA			cy_cd=U
CF		inform	r PASS e Stati	D27		0&agenc
ł		<u>rre</u> for j	E R BY	.7" NAJ		0231325
TEL		la lick He	CHEI a for t	s 82°38'1	'lorida.	site_no=(
ACC		orid	ACOO de dat	s100208 gitude	ite in F	 ismap/?s
Wľ,		r Fl	THLA	rida Code 03 5", Lon	of the s	'nwis/nw
313	S	o foi	50 WI	nty, Flo c Unit (9°01'1	cation	s.gov/fl/
JSC	esource	Mal	23132	y Cour drologic itude 2	Lo	·data.usg
lap	Vater R	ite I	SGS 0	Lev Hy(Lati		p://water
.		\mathbf{V}	ñ			htt

<i>с</i> і	CO				0/11/03
age	Area:				5
	aphic				
	Geogr Florida				
	Jory: tion	FLA	B	<u>. gov</u>	
	Lateg	SILE		mings (<u> <u> </u> </u>	
	Data	bility R INC		nte Sp uiries	
		relia JL NJ		ltamoi	
Αl		n data NNH	page	da - A	SGS
19N		tion o CHA	n home	7, 08 08 08 08 08 08 08 08 08 08 08 08 08	y_cd=U
T		forma PASS	Statio	VAD2 310020 310020 310020 310020 310020	kagenc
.,/H		for in & BYJ	s site	Unit 0. Unit 0. 09 200 04 198 03- 88-w-	132508
ř.		Here EE F	r this	2 82°38 logic U gin Da 1-09-(1-05-(1-05-(1-05-(tion to tion to	10=023
Ę.		Click OCH	ata fo	Hydro. Beg Hydro. 197 197 197 NN NN NN NN Sta	/?site_1
EE		ACO	ble da	rida, J. rida, J. v M Florida Florida bout tl	wisman
ÕC		THL	vaila	°01'15 E: A: A: ION: ION: CRM CRM Cor Cor Cor Cor Cor Cor Cor Cor Cor Cor	'nwis/n
'IT'.	10	0 WI	A iptior	ON Label 29 Count Count Count Count N DAT Dat Dat Dat Satrea s locat S locat I quest	.gov/fl/
132.	ources	31325	Jescr	TION CATIC Latitu Levy Wat Dail FOPI Emai	ita.usgs
5	er Res	S 022	tion I	LOC STA STA STA COP	waterda
	Wat	DSG	Sta		http://

102 ž -'ı SILE http://waterdata.usgs.gov/fl/nwis/nwisman/

2					
łge	<u>Top</u> Explanation of terms				
PGS 132. TTL DOL BE. TPA HA ILI VGI LA	Questions about data <u>gs-w-fl_NWISWeb_Data_Inquiries@usgs.gov</u> Feedback on this website <u>gs-w-fl_NWISWeb_Maintainer@usgs.gov</u> ** USGS 02313250 WITHLACOOCHEE R BYPASS CHANNEL NR INGLIS FLA http://waterdata.usgs.gov/fl/nwis/nwisman?	Retrieved on 2003-09-17 08:39:42 EDT Department of the Interior, U.S. Geological Survey USGS Water Resources of Florida Privacy Statement Disclaimer Accessibility 0.64 0.64			

File: G:\WATER\Projects\SWFWMD Projects\SWFWMD West Terminus CFBC\Work\Task 1.2.5 Update Water: shed Parameters\Flood Analysis\Holder calendar_year.txt 9/19/2003, 3:20:30]

US Geological Survey, Water Resources Data # retrieved: 2003-09-19 16:19:19 EDT # This file contains Calendar Year Streamflow Statistics # This file includes the following columns: # agency_cd agency code USGS site number # site_no Calendar year for value # year_nu annual-mean value in cubic-feet per-second. # mean_va if there is not complete record for a year this field is blank # Sites in this file include: # USGS 02313000 WITHLACOOCHEE RIVER NR HOLDER, FLA. agency_cd site_no year_nu mean_va 5s 15s 4s12n USGS

File:	G:\WATER\Project	ts\S W FWMD	Project	ts\SWFWMD	West	Termin	us CFBC	\Work\Task	1.2.5	Update	Water:
shed	Parameters\Flood	Analysis	Holder	calendar	year	txt 9	/19/2003	3, 3:20:30)			

USGS	02313000	1980	662
USGS	02313000	1981	276
USGS	02313000	1982	1542
USGS	02313000	1983	1538
USGS	02313000	1984	1201
USGS	02313000	1985	710
USGS	02313000	1986	705
USGS	02313000	1987	908
USGS	02313000	1988	1108
USGS	02313000	1989	564
USGS	02313000	1990	314
USGS	02313000	1991	531
USGS	02313000	1992	230
USGS	02313000	1993	363
USGS	02313000	1994	746
USGS	02313000	1995	1117
USGS	02313000	1996	877
USGS	02313000	1997	408
USGS	02313000	1998	1927
USGS	02313000	1999	362
USGS	02313000	2000	110
USGS	02313000	2001	274

Projectes/SNYMAD Projects/SNYMAD Meat Terminus CFBC/MORY/Task 1.2.5 Update Mat 1. Survy 1. Survy 1. Survy 1. Survy 1. Survy database Materia 2. 09-15 00:44:11 EDT 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Total Total <th< th=""><th>0 1937-05-11 2000 7.06 1937-10-01 8.85 2003 0 1937-10-03 2240 7.03 2.003 0 1939-09-24 2720 7.94 2003</th></th<>	0 1937-05-11 2000 7.06 1937-10-01 8.85 2003 0 1937-10-03 2240 7.03 2.003 0 1939-09-24 2720 7.94 2003
<pre>G:\MATER\Projects\SWFWMD P; G:\MATER\Projects\SWFWMD P; tional Mater Information Sys trieved: 2003-09-15 09:48:31 edata you have obtained from edata you have obtained from s. Geological Survey databas; S. Geological Survey databas; sector's approval and as such the contains the annual ied states Government may bi the contains the annual is information includes the gency_cd Gage height qua eas_da Annual peak streamflow gency_cd Gage height qua eas_da Pischarge is an flistor de subscharge is an flistor pischarge is an flistor from the flowers Day domention or Divers by Agench qual gencharge is an flistor de pischarge is an flistor from the flowers Day domention or Divers by Muning' Agricultures Discharge is an flistor de hight affected by domention or Divers de pischarge is an flistor de constrance for docurs de hight affected by domention or Day of cocurs de hight affected by domention or Day of cocurs de hight dualification code de hight qualification code de hight qualification code de hight dualification code de hig</pre>	104 104 104 104 104 104 104 104 104 105 105 105 105 105 105 105 105 105 105	02113000 1937-06- 02113000 1937-10- 02313000 1939-09-

2003-09-14 03:58:33	2003-09-14 03:58:33 2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33 2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33 2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33 2003-001-002	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33 2003-00-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33 2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-109-100 \$2:58:50 \$1-60-5002 55:58:50 \$1-60-5000	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33 2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33	2002-10-11-00-2002 2003-09-14 03-28-38	2003-09-14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33 2003-08 14 03:58:33	2003-09-14 03:58:33	2003-09-14 03:58:33 2003-09-14 03:58:33						
7.51		:	6.82	9.88	8.08	10.34	::	10.32	10.10		4.21	6.39					9.10	0 C B	07.0				4.74											8.55	8.15										3.21
1941-10-01			1945-10-01	1947-10-01	1945-09-30	1947-09-30		1952-10-01	1953-09-30		1957-10-01	1955-09-30					1964-09-30	1966-09-30					1973-10-01											1987-04-22	1988-09-30										2001-09-30
4.77	5.90 6.13	7.86	5.12	6.20	7.55	8.28	10.40	5.25	5.77	4.25	2.25	3.48	9.95	13.28	3.20	4.76	6.65	5.51	8.23	7.83	01.0 01.0	6.10	3.94	5.76	06.4	5.14	7.29	5.17	9.45	8.48	8.86	0 m	5.57	8.54	8 1.K	2.35	5.67	1.88	4.94	10.5 7.05	8.46	2.45	10.69 A 88	1.50	2.38 5.33
1400	1900	2780	1350 5330	2060	2700	3020	4980	1550	1710	1220	601	959 3240	4600	8660	1020	1460	2170	2260	3210	3000	0272	2070	1160	2730	1590	1520	2150	1420 E	4160 930 E	3390	3680	3100	1860	3100	1500	800	1770	531	1510	2480	3450	740	1700	530	661 1630
1940-08-08	1942-03-27	1943-09-02	1945-08-19	1946-03-03	1946-10-12	1948-10-06	1950-09-23	1952-03-30	1953-05-02	1955-09-28	1956-01-27	1956-11-12 1958-03-26	1959-04-07	1960-101-10	1962-09-28	1963-03-21	1964-02~11	1966-03-18	1966-10-01	1968-09-04	1970-02-06	1971-09-17	1972-04-05	1974-08-06	1974-10-01	1976-08-19	1978-03-12	1979-05-16	1980-11-28	1982-09-28	1982-10-07 1984-06-06	1985-09-25	1986-03-19	1987-04-21	1988-U3-14 1988-10-01	1990-01-08	1991-08-14	1991-10-05	1994-01-33	1995-09-27	1995-10-23	1996-10-08	1998-10-02	1999-11-02	2001-09-15 2002-09-28
02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	02313000	000515000	02313000	02313000	02313000	02313000	00051520	02313000	02313000	02313000	02313000	02313000	02313000	02313000	00061520	02313000	02313000	02313000	02313000	02313000	02313000
SSSU	SOSD	SSSU	CSOS C	nsgs	USGS	SSSD	USGS	2920 USGS	USGS	USGS	USGS	USGS USGS	USGS	USGS	USGS	USGS	USGS	SOSD	USGS	USGS	USGS	USGS	USGS	USGS	nses	0565	USGS	USGS	USGS	nsgs	2021	USGS	USGS	USGS	USGS	USGS	USGS	USGS	20221	USGS	USGS	USGS	USGS	USGS	USGS

File: G:\WATER\Projects\SWFWMD Projects\SWFWMD West Terminus CFBC\Work\Task 1.2.5 Update Watershed Parameters\Plood Analysis\With. Holder peak.txt 9/15/2003, 8:49:55AM

i

File: G:	\WATER\Projects	SWFWMD Projects/SWF	FWMD Wes	t Termi	nus CFBC	\Work\Ta	ask 1.2.	5 Update 1	Vatershe	d Parame	eters/Flo	od Analysi	s\Rainbow Springs	peak.txt	1/15/2003, 8:58:2	2 6 AM	1
# # U.S. G # Nationa # Retrieva	eological Surve al Water Inform ved: 2003-09-15	ry nation System 09:57:53 EDT															
# # The da # U.S. da Direct and ect # United # any dau	ta you have obt cological Surve or's approval & bject to revisi condition that States Governan ages resulting	WARNING	receive receive isional eleased or the ble for	, 1 0													
# # This f	ile contains th	ne annual peak stream	mflow da	ta.													
# # This i #	nformation inci	ludes the following f	fields:														
10 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Y_cd Agenc no dt Agenc dt forgs cd Annual cd Gage 1 ht_cd Gage 1 last_pk Paak 1 Date 4 c True 4 e_ht_cd maxim	Y Code t YYYY-MM-DD t YYYY-MM-DD 1 peak streamflow val lipeak streamflow val height for the associ- height qualification streamflow association height qualification height qualification hainwarge height for wa um Gage height for wa	lue in c ion code iated ode codes p is the h ht for w ater yea	fs s (see ak stre ighest ater ye r in fe	explanat amflow i since th ar (if n iet (if n	ion bel(n feet is year ot concu	ow) urrent w urrent w	ith peak) úth peak									
# Sites # USGS	in this file i 02313100 RAINB(nclude: JW SPRINGS NEAR DUNNE	ELLON, F	LA.													
تو با	<pre>%reamflow-Oual Discharge is Discharge af Discharge af Discharge af Regulation Regulation Regulation Discharge af Discharge af Disc</pre>	ification Codes(peak, a Maximum Daily Ave: a Satimum Daily Ave: a Satimum Indicated vai inhum Recordable Dil fected by Regulation or Diversion de; fected by Regulation an Historic Peak or Diversion de; or Diversion de; de difected by MacWatet ation codes(gage_ht_ diffected diversion ation codes(gage_ht_ diffected diversion ation codes(gage_ht_ diffected diversion ation codes(gage_ht_ diffected diffected ation codes(gage_ht_ diffected diffected diffected diffected diffect	cd): rage e gree by gree by gree by rot care indicate cane, cane, cane, cane, cane indicate cane, cane indicate cane, calage a by t r t r t v v a by t cane a by t cane a by t cane a by t cane a by t cane a by t cane a by t cane a by t cane a by t cane t c cane t c c cane t c cane t c cane t c cane t c c cane t c cane t c c cane t c c cane t c c c cane t c c c c cane t c c cane t c c c c c c c c c c c c c c c c c c	at this irsion d value crot ex banizat ization his yea ge_ht_c ge_ht_c vation	s site eact 1. or oth r id):	L .											
# agency_c 5s	d site_n 15s 10d	o peak_dt peak_tm pea 6s 8s 27s	ak_vape s 8s	ak_cd g	yage_ht g 13s 4	rage_ht_ s	cd 10d	year_last 6s 8	pk a	ag_dt 11s	ag_tm 19d	ag_gage_ht	ag_gage_ht_	cd modify	đt		
USGS USGS USGS USGS USGS USGS USGS USGS	0015150 0015150 0015150 0015150 0015150 0015150 0015150 002313100 02313100	1965-10-01 1966-10-17 1968-09-19 1968-109-29 1970-10-01 1971-10-19 1971-10-19 1971-10-19	1 4 6 8 8 6 6 7 7 6 4	80050004 90050004					970-10-2 971-11-0	0.01	1	200 200 3.44 2.79 2.61	3-09-14 03:58:33 3-09-14 03:58:33 3-09-14 03:58:33 3-09-14 03:58:33 3-09-14 03:55:33 3-09-14 03:58:33 3-09-14 2003-09-14 2003-09-14	03:58:33 03:58:33 03:58:33			

.

s peak.txt 9/15/2003, 8:58:26AM	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33	03:58:33
ysis\Rainbow Springs	2003-09-14 (2003-09-14 (2003-09-14 (2003-09-14 (2003-09-14	2003-09-14 (2003-09-14	2003-09-14	2003-09-14	2003-09-14 (2003-09-14 (2003-09-14	2003-09-14	2003-09-14	2003-09-14	2003-09-14 (2003-09-14 (2003-09-14	2003-09-14	2003-09-14 (2003-09-14 (2003-09-14 (2003-09-14 (2003-09-14 (2003-09-14 (2003-09-14 (
rameters/Flood Anal	2.69	2.44	2.57	2.48	3.08	3.31	3.61	3.10	3.32	2.94	2.75	3.32	2.18	2.34	2.50	2.33	2.60	2.63	3.44	3.99	3.90	3.43	2.91	1.97	2.13	2.48
<pre>2FBC\Work\Task 1.2.5 Update Watershed Pa</pre>	1975-10-11	1974-10-22	1976-09-13	1978-11-03	1978-03-16	1982-08-30	1982-11-03	1983-10-05	1985-09-27	1985-11-14	1987-04-07	1988-06-29	1987-05-31	1988-08-29	1991-09-19	1991-11-26	1992-12-03	1994-09-27	1994-10-14	1996-08-30	1996-10-07	1998-04-06	1998-10-14	1999~10-26	2001-08-30	2001-11-05
erminus	ч		ч	1	1	ч	ч	1	ч	-1						ч	-	1	ч	ч	ч	ч	ч	-	ч	1
CCS/SWFWMD West Te	755	750	692	684	852	987	1000	891	915	804	879	1060	1010	643	693	667	756	707	707	783	774	1030	892	608	626	650
jects/SWFWMD Proje	1974-09-25	1974-10-01	1976-08-18	1977-02-05	1978-03-26	1982-09-30	1982-10-07	1983-10-17	1985-09-20	1985-10-01	1987-04-25	1988-09-19	1988-10-01	1989-10-21	1991-08-30	1991-10-02	1992-10-25	1994-03-04	1994-11-21	1996-08-30	1996-10-07	1998-03-21	1998-11-05	1999-10-22	2001-09-27	2001-10-23
G: \WATER\Pro	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100	02313100
File:	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS	usgs	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS	USGS

•

File: G:\WATER\Projects\SWFWMD Projects\SWFWMD West Terminus CFBC\Work\Task 1.2.5 Update Watershed Parameters\Flood Analysis\With at Englis Dam peak.txt 9/15/2003, 9:11:11AM modify_dt 2003-09-14 03:58:33 2003-09-14 03:58:33 2003-09-14 03:58:33 2003-09-14 03:58:33 2003-09-14 03:58:33 2003-09-14 03:58:33 2003-09-14 03:58:33 ag_gage_ht_cd ag_gage_ht 27.98 28.07 28.05 27.99 27.71 27.71 27.81 27.81 ag_tm 19đ Year_last_pk ag_dt 6s 115 1970-08-11 1971-06-25 1971-06-26 1975-04-03 1975-00-01 1975-00-17 1975-00-17 1975-00-17 1975-07-15 1975-07-15 agency_cd Agency Code astrono USSS station number peak_dt formst YYYYM-DD peak_va Annual peak streamflow value in cfs peak_cd Peak Discharge-Qualification codes (see explanation below) gage_hr_cd Gage height for the associated peak streamflow in feet Gage height qualification codes states for the streamflow reported is the highest since this year year_last_pk peak streamflow reported is the highest since this year pag_cm bate of maximum gage-height for water year (if not concurrent with peak ag_grage_ht_cd maximum Gage height for water year (if not concurrent with peak ag_grage_ht_cd maximum Gage height for water year in feet (if not concurrent with peak va peak_cd gage_ht gage_ht_cd 860 1.6 1450 1.6 1450 1.6 1540 1.6 1.6 1.6 1.6 1.6 1.6 1.6 1.6 Peak Streamflow-Qualification Codes(peak_cd):
1 ... Discharge is a Maximum Daily Average
2 ... Discharge is a Maximum Daily Average
3 ... Discharge is a Maximum Daily Average
4 ... Discharge is a minicated value,
4 ... Discharge less than indicated value,
5 ... Discharge affected to unknown degree by
6 ... Discharge affected by Regulation or Diversion
6 ... Discharge affected by Regulation or Diversion
7 ... Discharge aftected by Regulation or Diversion
7 ... Discharge actually greater than indicated value
9 ... Discharge actually greater than indicated value
9 ... Discharge actually greater than indicated value
9 ... Discharge actually greater than indicated value
8 ... Discharge actually greater than indicated value
8 ... Discharge actually greater than indicated value
9 ... Discharge actually greater than indicated value
8 ... Discharge actually greater than indicated value
9 ... Discharge actually greater than indicated value
8 ... Discharge actually greater than indicated value
9 ... Discharge actually greater than indicated value
8 ... Discharge actually greater than indicated value
8 ... Only Annual Maximum Peak available for this year Sites in this file include: USGS 02313230 WITHLACOOCHEE R AT INCLIS DAM NR DUNNELLON, FLA. Gage height qualification codes(gage_ht_cd,ag_gage_ht_cd): 1...Gage height affected by backwater 2...Gage height not the maximum for the year 3...Gage height at different site and(or) datum 4...Gage height below minum recordable elevation 5...Gage height is an estimate 6...Gage datum changed during this year This file contains the annual peak streamflow data The data you have obtained from this automated U.S. Geological Survey database have not received Director's approval and as such are provisional and subject to revision. The data are released on that neither the USCS nor the United States Government may be held liable for any damages resulting from its use. o peak_dt peak_tm peak_va p 65 1971-01-21 1971-01-21 1971-09-17 1972-00-08 1972-10-01 1974-08-07 1974-08-07 1974-010-01 1976-05-24 1976-05-24 1976-10-01 1976-05-24 1976-10-01 1976-10-This information includes the following fields: U.S. Geological Survey National Water Information System Retrieved: 2003-09-15 10:10:30 EDT -cd site_no p 15s 10d 51 02313230 02313230 02313230 11 02313230 11 023113230 11 023113230 11 023113230 11 023113230 11 023113230 11 023113230 11 agency_cd

File: (S: \WATER\Project	s/SWFWMD Projects/SWFWMD	West Te	minus CFBC/Work/Task 1.2.5 (pdate Watershed Parameters/	Flood Ane	lysis/W	ith at Englis Dam peak.txt	9/15/2003, 9:11	MAI1:
NSGS	02313230	1978-03-09	2220		1978-03-03	ND 70		5003-00-11 03-58,33		
USGS	02313230	1979-09-30	1940	1,6	1979-05-14	ac cc				
USGS	02313230	1979-10-12	4500	1,6	1978-06-26	00 10				
USGS	02313230	1980-11-25	170	1,6	1980-11-24	AL LC				
USGS	02313230	1982-09-23	4280	1,6,C		ac ac	,			
USGS	02313230	1982-10-08	3820	1, 6, C	1981-06-13	10 10	1			
USGS	02313230	1984-03-29	2180	1,6,C	1984-05-05	28 01	• -			
USGS	02313230	1985-09-01	3560	1, 6, C	1985-06-14	10.00	4			
USGS	02313230	1985-11-01	2540	1.6	1984-01-23	20.80	4			
USGS	02313230	1987-04-21	3680	1,6,C	05-00-2801	00.00	ŗ			
USGS	02313230	1988-09-06	4370	1.6.C	1989-11-27	10.10	4	50.00 \$1-00-5005		
USGS	02313230	1988-10-01	2790	1,6,C	1987-02	27 96	1	2003-00 TT 02-58-33		
USGS	02313230	1990-01-10	006	1,6,C	1990-07-14	27.95		2003-09-14 03-58-33		
USGS	02313230	1991-07-28	1620	1,6,C	1992-10-11	28.02		2003-00-12 03-58-32		
USGS	02313230	1992-09-05	1010	1, 6, C	1992-09-04	27 90	1			
USGS	02313230	1992-10-03	3020	1,6,C	1992-10-03	28.05				
USGS	02313230	1994-09-21	1480	1.6,C	1994-07-12	28.25				
USGS	02313230	1994-10-12	1910	1, 6, C	1993-08-19	28.02		2003-02-14 03-58-33		
USGS	02313230	1995-10-05	2790	1,6,C	1994-04-04	27.92		2003-09-14 03:58:33		
USGS	02313230	1996-10-08	1240	1,6,C	1996-12-04	27.83		2003-09-14 03-58:33		
USGS	02313230	1998-03-20	6000	1,6,C	1999-12-25	28.06		2003-00-14 03-58-33		
USGS	02313230	1998-10-01	2319	1,6,C	1997-06-04	28.05		2003-09-14 03-58-33		
USGS	02313230	2000-09-18	948	1,6,C	2001-10-21	27.81		2003-09-14 03:58:33		
USGS	02313230	2001-09-16	1300	1,6,C	2001-09-25	27.92		2003-09-14 03-58:33		
USGS	02313230	2002-09-26	1690	1,6,C	2002-06-23	28.01		2003-09-14 03:58:33		

2:39AM							
txt 9/15/2003, 9:1							modify_dt 58:33 58:33 58:33 58:33 58:33 58:33 58:33 58:33 58:33
s\With Bypass peak.							ag_gage_ht_cd 2003-09-14 03: 2003-09-14 03: 2003-09-14 03: 2003-09-14 03: 2003-09-14 03: 2003-09-14 03: 2003-09-14 03: 2003-09-14 03:
Flood Analysi							ag_gage_ht 27.52 27.52 27.43 27.44 28.16 28.31 28.31 28.20
ameters/1							ag_tm 19d
rshed Par							ag_dt 115 06-12 09-01 -09-01 -09-24 -09-24 -05-19 -05-19 -05-19 -05-19
2.5 Update Wate				with peak) with peak with peak			year_last_pk 6s 1971 1972 1973 1973 1973 1976
ork\Task 1.				n below) feet year concurrent concurrent			e_ht_cd 10d
IS CFBC/W				xplanatio mflow in ince this r (if not t (if not t (if not	FLA	site ct ct on, i other	ດດດດດດດດດ - ຄື ຊີຊີ
st Termin		1 Q	ata.	rfs es (see e eak streau nighest s water yea ar in fee ar in fee	SINGLIS	at this ersion ed value act exa r not exa tration this year this year this vear this rear	6500 650 650 650 650 650 650 630 630 630 630 630 630 630 630 630 63
SWFWMD Wes		automated not receive provisional provisional S nor the S nor the liable for	rreamflow da	 v value in c v value in c ssociated pe ssociated pe sthe f the f <lithe f<="" li=""> the f <lithe f<="" li=""></lithe></lithe>	S CHANNEL NI	peak_cd): Average ilure, a value, degree by degree by thio or Divve an indicatu an indicatu an or not ex an or not ex an or not ex artis year ilable for ilable value crdable elu ser	n peak_va pe 88 81 11 11 11 11 11 11 11 11 11 11
ts/SWFWMD Projects	vey rmation System 15 10:12:18 EDT	WARNING	the annual peak st cludes the follow!	icy Code at YYY-PM-DD at YYY-PM-DD heak streamflow biototharge-Qualifi biototharge-Qualifi biototh for utilitae biototh for utilitae biototharitow report of maximum gage-h mum Gage height for fimum Gage height for	include: HLACOOCHEE R BYPASS	<pre>Allification Codes(f is a Maximum Daily iffected by Dam Fa iffected by Dam Fa iffected by Nam Fa Minimum Recordabile ffected to unknown or orbituresion if ected by Regula iffected by Regula iffected by Regula or Debits Dam Browal Agricultural change Agricultural change Agricultural change Agricultural change Agricultural change Agricultural change affected by back i mot the maximum i at different sit i an estimate changed during th changed during th</pre>	_no peak_dt peak_tr 1971-09-09 1972-04-09 1973-09-02 1973-10-06 1974-10-06 1977-01-01 1977-01-04 1977-01-04 1977-01-04 1978-08-02
3:\WATER\Projec	Geological Sur onal Water Info ieved: 2003-09-	data you have c Geological Sur cror's approval subject to revi he condition th e States Govers damages resulti	file contaíns information in	rry_cd Age: rry_cd Age: k_dt forn k_rda Ann k_rda Peal e_ht_cd Gage e_ht_cd Gage t_last_pk Peal tagae_ht maxi gage_ht_cd maxi	s in this file S 02313250 WITH	Streamflow-Qu Discharge Discharge Unischarge Which Discharge Disch	-cd site. 15s 10d 15s 10d 02313250 02313250 02313250 02313250 02313250 02313250 02313250
ile:	# U.S. Nati Retr	The	# This # This	**************************************	# # Site # USG	####################################	agency 5s 5s CUSGS CUSGS CUSGS CUSGS CUSGS CUSGS CUSGS CUSGS CUSGS

03, 9:12:39AM																								
peak.txt 9/15/20	14 03.58.33	52.02.50 PL				L4 U3:38:33	14 03:58:33	14 03:58:33	14 03.58.33	55.82.50 11			CC:2C:CO #T	14 03:58:33	14 03:58:33	14 03.58.33			14 U3:58:33	14 03:58:33	14 03:58:33			14 03:58:33
s\With Bypass	-00-5002	-002-002			2002-002	- 60 - 6002	2003-09-	2003-09-	2003-09-	-00-5000				2003-09-	2003-09-	- 003-09-			2003-09-	2003-09-	- 003-09-		100-0004	2003-09-
Analysis	-	• •	•		2	0	0	2			a		•	0	8	4			7	9	6		,	6
\Flood	27 BL	12 20	0 10			1.1.2	28.2(28.1.	12.72	12 20	10 10		0.17	28.21	27.95	28.14			.1.12	27.94	27.8	0 40	0.14	27.8
Parameters																								
tershed	2-06-18	3-01-20	50-50-6		BT-00-0	TC-0T-/	7-06-03	6-09-06	9-06-08	0-07-14	1-01-20	10	/	4-01-02	4-10-15	4-04-18	00-00-2		9-03-09	7-08-11	8-03-31	1-07-23		0-06-23
odate Wa	198	198	801			T A B	198	1980	198	1991	001			66T	199,	199,	001		TAA	199	1991	000		200
1.2.5 Up																								
VWOrk/Task																								
DET CEBC	6, C	6,0	6.0		,		٩.	9	. 6	9	9			0	9	9	9			9	9	v.		0
Itura.t	0 1,	0 1,	0 1.				, i	1,	0 1,	0 1,	0			T N	о Г,	0 1,	0			0 1	0 1,	0		, L,
un west	180	161	176	154	167		BOT	184	164	154	163	116			140	131	131	CBL		158	126	150		154
LS / SWEW.																								
1 110140	6-19	12-19	12-22	8-16	1-22		20-07	10-01	12-01	17-15	19-10	0-06	15-17		0-27	.0-07	19-30	2-25		0-03	.0-22	9-29	000	0-08
S / SWE WEIL	1982-0	1983-0	1984-0	1985-0	1986-0		1-10AT	1987-1	1989-0	1990-0	1991-0	1991-1	1004-0		1994-1	1995-1	1997-0	1997-1		T-RAAT	1999-1	2001-0		T-T007
	-	~	-	_			_	~	~	~	_	_			-	~	~	_		_	~	_		_
AV NALER VE	02313250	02313250	02313250	02313250	02313250			02313250	02313250	02313250	02313250	02313250	02411250		02313250	02313250	02313250	02313250		NC7 CT C7 N	02313250	02313250	03666660	
	USGS	USGS	USGS	USGS	USGS	00011	200	USGS	USGS	USGS	USGS	USGS	110.00		USGS 0	USGS	USGS	0565	0001	2000	USGS	USGS	00011	0000

.

,

File: G:\WATER\Projects\SWFWMD Projects\SWFWMD West Terminus CFBC\Work\Task 1.2.5 Update Water: shed Parameters\Flood Analysis\HOLDER.OUT 9/15/2003, 9:57:482

Flood Frequency Analysis Time Series (Water Year) of Maximum Instanteous Discharge URS

Withlachochee River nr Holder, cfs

RANK	QUANTITY	CALIFORNIA	GINGORTEN	BLOM
RANK 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21	QUANTITY 530.0 531.0 555.0 601.0 661.0 740.0 800.0 814.0 930.0 959.0 1020.0 1050.0 1160.0 1220.0 1350.0 1400.0 1400.0 1400.0 1400.0 1490.0	CALIFORNIA 1.39 2.78 4.17 5.56 6.94 8.33 9.72 11.11 12.50 13.89 15.28 16.67 18.06 19.44 20.83 22.22 23.61 25.00 26.39 27.78 29.17	GINGORTEN .79 2.19 3.60 5.01 6.41 7.82 9.22 10.63 12.04 13.44 14.85 16.25 17.66 19.07 20.47 21.88 23.28 24.69 26.10 27.50	BLOM .88 2.28 3.68 5.09 6.49 7.89 9.30 10.70 12.11 13.51 14.91 16.32 17.72 19.12 20.53 21.93 23.33 24.74 26.14 27.54
21 22 23 24 25 26 27 28 29 30 31 32	1500.0 1510.0 1520.0 1590.0 1630.0 1700.0 1710.0 1770.0 1860.0 1860.0 1890.0	29.1730.5631.9433.3334.7236.1137.5038.8940.2841.6743.0644.44	28.91 30.31 31.73 34.53 35.94 37.35 38.75 40.16 41.56 42.97 44.38	28.9530.3531.7533.1634.5635.9637.3738.7740.1841.5842.9844.39
33 34 35 36 37 38 39 40 41 42 43 44	1990.0 2060.0 2070.0 2120.0 2150.0 2170.0 2240.0 2260.0 2480.0 2700.0 2720.0 2720.0 2730.0	45.83 47.22 48.61 50.00 51.39 52.78 54.17 55.56 56.94 58.33 59.72 61.11	45.78 47.19 48.59 50.00 51.41 52.81 54.22 57.62 57.03 58.44 59.84 61.25	$\begin{array}{c} 45.79\\ 47.19\\ 48.60\\ 50.00\\ 51.40\\ 52.81\\ 54.21\\ 55.61\\ 57.02\\ 58.42\\ 59.82\\ 61.23\\ 61.23\\ 61.62\end{array}$
45 46 47 48 49 50 Analysi: r Year)	2780.0 2800.0 2950.0 3000.0 3020.0 3090.0 s of Maximum	62.50 63.89 65.28 66.67 68.06 69.44 Instanteous	62.65 64.06 65.47 66.87 68.28 69.69 Discharge	62.63 64.04 65.44 66.84 68.25 69.65

1

1

Flood Frequency A Time Series (Water URS

Withlachochee River nr Holder, cfs

513100.070.8371.0971.05523100.072.2272.5072.46533210.073.6173.9073.86543240.075.0075.3175.26553290.076.3976.7276.67563390.077.7878.1278.07573430.079.1779.5379.47	RANK	QUANTITY	CALIFORNIA	GINGORTEN	BLOM
	51 52 53 54 55 56 57	3100.0 3100.0 3210.0 3290.0 3390.0 3430.0	70.83 72.22 73.61 75.00 76.39 77.78 79.17	71.09 72.50 73.90 75.31 76.72 78.12 79.53	71.05 72.46 73.86 75.26 76.67 78.07 79.47

File: G:\WATER\Projects\SWFWMD Projects\SWFWMD West Terminus CFBC\Work\Task 1.2.5 Update Water: shed Parameters\Flood Analysis\HOLDER.OUT 9/15/2003, 9:57:48

59 60	3680.0	81.94	82.34	82.28
61	3980.0	84.72	85.15	85.09
62 63	4160.0 4600.0	86.11 87.50	86.56 87.96	86.49 87.89
64	4980.0	88.89	89.37	89.30
65 66	5050.0	90.28 91.67	90.78 92.18	90.70 92.11
67	5360.0	93.06	93.59	93.51
68 69	6740.0	94.44 95.83	94.99	94.91 96.32
70 71	7060.0 8660 0	97.22	97.81	97.72
1	0000.0	30.01	99.21	33.12

DISTRIBUTION		CHI TEST	
NORMAL LOG-NORMAL LOG-PEARSON T3 EXPONENTIAL EXTREME VALUE T1	296.20 6.65 6.57 23.89 100.66	416.96 10.01 5.86 21.11 92.59	365.85 8.87 5.55 21.23 86.25
LIN MEAN= 2551.986 STDV= 1657.641 SKEW= 1.396	LOG 3.320 .283 182		

STDV=	1657.641	.2
SKEW=	1.396	1

		DISTRIBUTION	50.00	PRO	BABILITY (F NONE EXC	EEDENCY
99.08	99.5%		50.0%	80.08	90.08	95.08	98.0%
		NORMAL	2552.0	3947.1	4676.3	5278.6	5956.4
6408.2	6821.8	LOG-NORMAL	2090 3	3620 5	1821 7	6115 7	7086 3
9541.5	11228.8	LOG-NOMME	2090.5	5020.5	4024.7	0115.7	1900.5
0.7.4.0	10016 0	LOG-PEARSON T3	2132.1	3638.2	4758.3	5906.1	7487.6
8740.6	10046.0	EXPONENTIAL	2043 3	3562.2	4711.2	5860.2	7379 1
8528.1	9677.1		201313	5502.2	1/11/0	5000.2	1312.1
7752 0	0.000 0	EXTREME VALUE T1	2279.9	3745.4	4715.7	5646.4	6851.1
1153.9	8653.3						
 255 	2.0 3947	.1 4676.3 5278.	6 5956.	4 6408.	2 6821.	8	
		LOG-NORMAL	2090.3	3620.5	4824.7	6115.7	7986.3

9541.5 11228.8

File: G:\WATER\Projects\SWFWMD Projects\SWFWMD West Terminus CFBC\Work\Task 1.2.5 Update Water: shed Parameters\Flood Analysis\INGLIS.OUT 12/15/2003, 9:08:36/

1

1

STREAMFLOW FREQUENCY ANALYSIS TIME SERIES OF ANNUAL MAXIMA FOR WITHLACHOOCEE AT INGLIS AND BYPASS URS FOR THE SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT ONE-DAY MAXIMUMS WITHLACOOCHEE

RANK	QUANTITY	CALIFORNIA	GINGORTEN	BLOM
1	1320.0	2.94	1.69	1.88
2	1393.0	5.88	4.71	4.89
3	1660.0	8.82	7.73	7.89
4	1700.0	11.76	10.75	10.90
5	1847.0	14.71	13.77	13.91
6	2047.0	17.65	16.79	16.92
7	2133.0	20.59	19.81	19.92
8	2164.0	23.53	22.83	22.93
9	2210.0	26.47	25.85	25.94
10	2469.0	29.41	28.86	28.95
11	2500.0	32.35	31.88	31.95
12	2700.0	35.29	34.90	34.96
13	2800.0	38.24	37.92	37.97
14	2910.0	41.18	40.94	40.98
15	2970.0	44.12	43.96	43.98
16	2980.0	47.06	46.98	46.99
17	2990.0	50.00	50.00	50.00
18	3050.0	52.94	53.02	53.01
19	3217.0	55.88	56.04	56.02
20	2260.0	50.02	59.00	59.02
21	3300.0	64 71	62.00	62.03
22	3580.0	67 65	69.10	69.04
23	3880 0	70 59	71 14	71 05
25	3960 0	73 53	74 15	74 06
26	4230.0	76.47	77.17	77 07
27	4520.0	79.41	80.19	80.08
28	4710.0	82.35	83.21	83.08
29	4815.0	85.29	86.23	86.09
30	5050.0	88.24	89.25	89.10
31	5139.0	91.18	92.27	92.11
32	5232.0	94.12	95.29	95.11
33	6979.0	97.06	98.31	98.12
DISTRIBUT	ON		ርዘ፤ ጥፑናጥ	
DISINIDUII	01		CHT TOT	
NORMAL		28.40	58.47	49.30
LOG-NORMAL		7.96	6.56	6.36
LOG-PEARSO	N ТЗ	8.09	5.53	5.59
EXPONENTIA	L	35.30	32.99	32.89

LOG-PEARSON	т3	8.09	5.53
EXPONENTIAL		35.30	32.99
EXTREME VAL	UE T1	10.55	6.54
	LIN	LOG	
MEAN= 3249	.242	3.478	

MEAN=	3249.242	3.478
STDV=	1298.470	.176
SKEW=	.791	156

STREAMFLOW FREQUENCY ANALYSIS TIME SERIES OF ANNUAL MAXIMA FOR WITHLACHOOCEE AT INGLIS AND BYPASS URS FOR THE SOUTHWEST FLORIDA WATER MANAGEMENT DISTRICT

		DISTRIBUTION	50.0%	PR 80.0%	OBABILITY 90.0%	OF NONE : 95.0%	EXCEEDENCY 98.0%
99.0%	99.5%	NORMAL	3249.2	4342.1	4913.3	5385.0	5916.0
6269.9	6593.9	LOG-NORMAL	3007.3	4227.3	5050.8	5850.5	6903.1
7708.0	8526.7	LOG-PEARSON T3	3039.0	4238.5	5014 4	5744 1	6671 9
7358.8	8038.8	EVENTET AL	2850 8	4040 6	1940 6	5940 6	7020 4
7930.4	8830.5	EXPONENTIAL	2030.0	4104 1	4940.0	5640.0	7030.4
7324.0	8028.6	EATREME VALUE TI	3030.1	4104.1	4944.1	50/3.2	0010.8

Page: 1

6.81

File: G:\WATER\Projects\SWFWMD Projects\SWFWMD West Terminus CFBC\Work\Task 1.2.5 Update Water: shed Parameters\Flood Analysis\INGLIS.OUT 12/15/2003, 9:08:36?

• 3249.2 4342.1 4913.3 5385.0 5916.0 6269.9 6593.9 LOG-NORMAL 3007.3 4227.3 5050.8 5850.5 6903.1 7708.0 8526.7 LOG-PEARSON T3 3039.0 4238.